import pandas as pd import numpy as np from datetime import datetime from data import extract_model_data import gradio as gr def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict: """Return dataframes for historical summary plots (failure rates, AMD tests, NVIDIA tests).""" # Group by date to get daily statistics daily_stats = [] dates = sorted(historical_df['date'].unique()) for date in dates: date_data = historical_df[historical_df['date'] == date] amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0 amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0 amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0 amd_total = amd_passed + amd_failed + amd_skipped amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0 nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0 nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0 nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0 nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0 daily_stats.append({ 'date': date, 'amd_failure_rate': amd_failure_rate, 'nvidia_failure_rate': nvidia_failure_rate, 'amd_passed': amd_passed, 'amd_failed': amd_failed, 'amd_skipped': amd_skipped, 'nvidia_passed': nvidia_passed, 'nvidia_failed': nvidia_failed, 'nvidia_skipped': nvidia_skipped }) # Failure rate dataframe failure_rate_data = [] for i, stat in enumerate(daily_stats): amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] if i > 0 else 0 nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate'] if i > 0 else 0 failure_rate_data.extend([ {'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change}, {'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change} ]) failure_rate_df = pd.DataFrame(failure_rate_data) # AMD tests dataframe amd_data = [] for i, stat in enumerate(daily_stats): passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] if i > 0 else 0 failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] if i > 0 else 0 skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] if i > 0 else 0 amd_data.extend([ {'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change}, {'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change}, {'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change} ]) amd_df = pd.DataFrame(amd_data) # NVIDIA tests dataframe nvidia_data = [] for i, stat in enumerate(daily_stats): passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] if i > 0 else 0 failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed'] if i > 0 else 0 skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped'] if i > 0 else 0 nvidia_data.extend([ {'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change}, {'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change}, {'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change} ]) nvidia_df = pd.DataFrame(nvidia_data) return { 'failure_rates_df': failure_rate_df, 'amd_tests_df': amd_df, 'nvidia_tests_df': nvidia_df, } def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict: """Return dataframes for a specific model's historical plots (AMD, NVIDIA).""" model_data = historical_df[historical_df.index.str.lower() == model_name.lower()] if model_data.empty: empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': [], 'change': []}) return {'amd_df': empty_df.copy(), 'nvidia_df': empty_df.copy()} dates = sorted(model_data['date'].unique()) amd_data = [] nvidia_data = [] for i, date in enumerate(dates): date_data = model_data[model_data['date'] == date] row = date_data.iloc[0] amd_passed = row.get('success_amd', 0) amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0) amd_skipped = row.get('skipped_amd', 0) prev_row = model_data[model_data['date'] == dates[i-1]].iloc[0] if i > 0 and not model_data[model_data['date'] == dates[i-1]].empty else None amd_passed_change = amd_passed - (prev_row.get('success_amd', 0) if prev_row is not None else 0) amd_failed_change = amd_failed - (prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) if prev_row is not None else 0) amd_skipped_change = amd_skipped - (prev_row.get('skipped_amd', 0) if prev_row is not None else 0) amd_data.extend([ {'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': amd_passed_change}, {'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': amd_failed_change}, {'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': amd_skipped_change} ]) nvidia_passed = row.get('success_nvidia', 0) nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0) nvidia_skipped = row.get('skipped_nvidia', 0) if prev_row is not None: prev_nvidia_passed = prev_row.get('success_nvidia', 0) prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0) prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0) else: prev_nvidia_passed = prev_nvidia_failed = prev_nvidia_skipped = 0 nvidia_data.extend([ {'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed - prev_nvidia_passed}, {'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed - prev_nvidia_failed}, {'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped - prev_nvidia_skipped} ]) return {'amd_df': pd.DataFrame(amd_data), 'nvidia_df': pd.DataFrame(nvidia_data)} def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict: """Create time-series visualization for overall failure rates over time using Gradio native plots.""" if historical_df.empty or 'date' not in historical_df.columns: # Return empty plots empty_df = pd.DataFrame({'date': [], 'failure_rate': [], 'platform': []}) return { 'failure_rates': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["failure_rate", "date", "change"]), 'amd_tests': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["count", "date", "change"]), 'nvidia_tests': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["count", "date", "change"]) } # Group by date to get daily statistics daily_stats = [] dates = sorted(historical_df['date'].unique()) for date in dates: date_data = historical_df[historical_df['date'] == date] # Calculate AMD stats - use the correct column names from the data structure amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0 amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0 amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0 amd_total = amd_passed + amd_failed + amd_skipped amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0 # Calculate NVIDIA stats - use the correct column names from the data structure nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0 nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0 nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0 nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0 daily_stats.append({ 'date': date, 'amd_failure_rate': amd_failure_rate, 'nvidia_failure_rate': nvidia_failure_rate, 'amd_passed': amd_passed, 'amd_failed': amd_failed, 'amd_skipped': amd_skipped, 'nvidia_passed': nvidia_passed, 'nvidia_failed': nvidia_failed, 'nvidia_skipped': nvidia_skipped }) # Create failure rate data failure_rate_data = [] for i, stat in enumerate(daily_stats): # Calculate change from previous point amd_change = 0 nvidia_change = 0 if i > 0: amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate'] failure_rate_data.extend([ {'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change}, {'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change} ]) failure_rate_df = pd.DataFrame(failure_rate_data) # Create AMD test results data amd_data = [] for i, stat in enumerate(daily_stats): # Calculate change from previous point for each test type passed_change = 0 failed_change = 0 skipped_change = 0 if i > 0: passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] amd_data.extend([ {'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change}, {'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change}, {'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change} ]) amd_df = pd.DataFrame(amd_data) # Create NVIDIA test results data nvidia_data = [] for i, stat in enumerate(daily_stats): # Calculate change from previous point for each test type passed_change = 0 failed_change = 0 skipped_change = 0 if i > 0: passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed'] skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped'] nvidia_data.extend([ {'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change}, {'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change}, {'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change} ]) nvidia_df = pd.DataFrame(nvidia_data) return { 'failure_rates': gr.LinePlot( failure_rate_df, x="date", y="failure_rate", color="platform", color_map={"AMD": "#FF6B6B", "NVIDIA": "#4ECDC4"}, title="Overall Failure Rates Over Time", tooltip=["failure_rate", "date", "change"], height=300, x_label_angle=45, y_title="Failure Rate (%)" ), 'amd_tests': gr.LinePlot( amd_df, x="date", y="count", color="test_type", color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"}, title="AMD Test Results Over Time", tooltip=["count", "date", "change"], height=300, x_label_angle=45, y_title="Number of Tests" ), 'nvidia_tests': gr.LinePlot( nvidia_df, x="date", y="count", color="test_type", color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"}, title="NVIDIA Test Results Over Time", tooltip=["count", "date", "change"], height=300, x_label_angle=45, y_title="Number of Tests" ) } def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict: """Create time-series visualization for a specific model using Gradio native plots.""" if historical_df.empty or 'date' not in historical_df.columns: # Return empty plots empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []}) return { 'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]), 'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"]) } # Filter data for the specific model (model_name is the index) model_data = historical_df[historical_df.index.str.lower() == model_name.lower()] if model_data.empty: # Return empty plots empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []}) return { 'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]), 'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"]) } # Group by date dates = sorted(model_data['date'].unique()) amd_data = [] nvidia_data = [] for i, date in enumerate(dates): date_data = model_data[model_data['date'] == date] if not date_data.empty: # Get the first row for this date (should be only one) row = date_data.iloc[0] # AMD data - use the correct column names from the data structure amd_passed = row.get('success_amd', 0) amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0) amd_skipped = row.get('skipped_amd', 0) # Calculate change from previous point passed_change = 0 failed_change = 0 skipped_change = 0 if i > 0: prev_date_data = model_data[model_data['date'] == dates[i-1]] if not prev_date_data.empty: prev_row = prev_date_data.iloc[0] prev_amd_passed = prev_row.get('success_amd', 0) prev_amd_failed = prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) prev_amd_skipped = prev_row.get('skipped_amd', 0) passed_change = amd_passed - prev_amd_passed failed_change = amd_failed - prev_amd_failed skipped_change = amd_skipped - prev_amd_skipped amd_data.extend([ {'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': passed_change}, {'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': failed_change}, {'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': skipped_change} ]) # NVIDIA data - use the correct column names from the data structure nvidia_passed = row.get('success_nvidia', 0) nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0) nvidia_skipped = row.get('skipped_nvidia', 0) # Calculate change from previous point for NVIDIA nvidia_passed_change = 0 nvidia_failed_change = 0 nvidia_skipped_change = 0 if i > 0: prev_date_data = model_data[model_data['date'] == dates[i-1]] if not prev_date_data.empty: prev_row = prev_date_data.iloc[0] prev_nvidia_passed = prev_row.get('success_nvidia', 0) prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0) prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0) nvidia_passed_change = nvidia_passed - prev_nvidia_passed nvidia_failed_change = nvidia_failed - prev_nvidia_failed nvidia_skipped_change = nvidia_skipped - prev_nvidia_skipped nvidia_data.extend([ {'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed_change}, {'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed_change}, {'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped_change} ]) amd_df = pd.DataFrame(amd_data) nvidia_df = pd.DataFrame(nvidia_data) return { 'amd_plot': gr.LinePlot( amd_df, x="date", y="count", color="test_type", color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"}, title=f"{model_name.upper()} - AMD Results Over Time", x_label_angle=45, y_title="Number of Tests", height=300, tooltip=["count", "date", "change"] ), 'nvidia_plot': gr.LinePlot( nvidia_df, x="date", y="count", color="test_type", color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"}, title=f"{model_name.upper()} - NVIDIA Results Over Time", x_label_angle=45, y_title="Number of Tests", height=300, tooltip=["count", "date", "change"] ) }