Spaces:
Sleeping
Sleeping
File size: 26,414 Bytes
c0635c0 6db4f2b c0635c0 f3d1cf2 6ca8993 f3d1cf2 6ca8993 f3d1cf2 6ca8993 f3d1cf2 6ca8993 f3d1cf2 6ca8993 be882e1 f3d1cf2 6ca8993 f3d1cf2 7f14486 c0635c0 f3d1cf2 c0635c0 6ca8993 c0635c0 f3d1cf2 c0635c0 f3d1cf2 c0635c0 f3d1cf2 c0635c0 f3d1cf2 c0635c0 f3d1cf2 c0635c0 f3d1cf2 c0635c0 f3d1cf2 6ca8993 c0635c0 f3d1cf2 c0635c0 f3d1cf2 c0635c0 6ca8993 c0635c0 6ca8993 c0635c0 f3d1cf2 c0635c0 f3d1cf2 c0635c0 f3d1cf2 c0635c0 f3d1cf2 c0635c0 f3d1cf2 6ca8993 f3d1cf2 6ca8993 f3d1cf2 6ca8993 f3d1cf2 6ca8993 f3d1cf2 7f14486 6ca8993 7f14486 f3d1cf2 c0635c0 60ca44f c0635c0 60ca44f c0635c0 60ca44f c0635c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 |
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "plotly[express]==6.3.0",
# "polars==1.33.1",
# ]
# ///
import marimo
__generated_with = "0.15.3"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Dealing with Missing Data
_by [etrotta](https://github.com/etrotta) and [Felix Najera](https://github.com/folicks)_
This notebook covers some common problems you may face when dealing with real datasets and techniques used to solve deal with them, showcasing polars functionalities to handle missing data.
First we provide an overview of the methods available in polars, then we walk through a mini case study with real world data showing how to use it, and at last we provide some additional information in the 'Bonus Content' section.
You can navigate to skip around to each header using the menu on the right side
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Methods for working with Nulls
We'll be using the following DataFrame to show the most important methods:
"""
)
return
@app.cell(hide_code=True)
def _(pl):
df = pl.DataFrame(
[
{"species": "Dog", "name": "Millie", "height": None, "age": 4},
{"species": "Dog", "name": "Wally", "height": 60, "age": None},
{"species": "Dog", "name": None, "height": 50, "age": 12},
{"species": "Cat", "name": "Mini", "height": 15, "age": None},
{"species": "Cat", "name": None, "height": 25, "age": 6},
{"species": "Cat", "name": "Kazusa", "height": None, "age": 16},
]
)
df
return (df,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Counting nulls
A simple yet convenient aggregation
"""
)
return
@app.cell
def _(df):
df.null_count()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Dropping Nulls
The simplest way of dealing with null values is throwing them away, but that is not always a good idea.
"""
)
return
@app.cell
def _(df):
df.drop_nulls()
return
@app.cell
def _(df):
df.drop_nulls(subset="name")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Filtering null values
To filter in polars, you'll typically use `df.filter(expression)` or `df.remove(expression)` methods.
Filter will only keep rows in which the expression evaluates to True.
It will remove not only rows in which it evaluates to False, but also those in which the expression evaluates to None.
Remove will only remove rows in which the expression evaluates to True.
It will keep rows in which it evaluates to None.
"""
)
return
@app.cell
def _(df, pl):
df.filter(pl.col("age") > 10)
return
@app.cell
def _(df, pl):
df.remove(pl.col("age") < 10)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
You may also be tempted to use `== None` or `!= None`, but operators in polars will generally propagate null values.
You can use `.eq_missing()` or `.ne_missing()` methods if you want to be strict about it, but there are also `.is_null()` and `.is_not_null()` methods you can use.
"""
)
return
@app.cell
def _(df, pl):
df.select(
"name",
(pl.col("name") == None).alias("Name equals None"),
(pl.col("name") == "Mini").alias("Name equals Mini"),
(pl.col("name").eq_missing("Mini")).alias("Name eq_missing Mini"),
(pl.col("name").is_null()).alias("Name is null"),
(pl.col("name").is_not_null()).alias("Name is not null"),
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Filling Null values
You can also fill in the values with constants, calculations or by consulting external data sources.
Be careful not to treat estimated or guessed values as if they a ground truth however, otherwise you may end up making conclusions about a reality that does not exists.
As an exercise, let's guess some values to fill in nulls, then try giving names to the animals with `null` by editing the cells
"""
)
return
@app.cell
def _(df, mo, pl):
guesstimates = df.with_columns(
pl.col("height").fill_null(pl.col("height").mean().over("species")),
pl.col("age").fill_null(0),
)
guesstimates = mo.ui.data_editor(
guesstimates,
editable_columns=["name"],
)
guesstimates
return (guesstimates,)
@app.cell
def _(guesstimates):
guesstimates.value
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### TL;DR
Before we head into the mini case study, a brief review of what we have covered:
- use `df.null_counts()` or `expr.is_null()` to count and identify missing values
- you could just drop rows with values missing in any columns or a subset of them with `df.drop_nulls()`, but for most cases you'll want to be more careful about it
- take into consideration whenever you want to preserve null values or remove them when choosing between `df.filter()` or `df.remove()`
- if you don't want to propagate null values, use `_missing` variations of methods such as `eq` vs `eq_missing`
- you may want to fill in missing values based on calculations via `fill_null`, join and coalesce based on other datasets, or manually edit the data based on external documents
You can also refer to the polars [User Guide](https://docs.pola.rs/user-guide/expressions/missing-data/) more more information.
Whichever approach you take, remember to document how you handled it!
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Mini Case Study
We will be using a dataset from `alertario` about the weather in Rio de Janeiro, originally available in Google Big Query under `datario.clima_pluviometro`. What you need to know about it:
- Contains multiple stations covering the Municipality of Rio de Janeiro
- Measures the precipitation as millimeters, with a granularity of 15 minutes
- We filtered to only include data about 2020, 2021 and 2022
"""
)
return
@app.cell
def _(px, stations):
px.scatter_map(stations, lat="lat", lon="lon", text="name")
return
@app.cell(disabled=True, hide_code=True)
def _(pl, px, stations):
# In case `scatter_map` does not works for you:
_fig = px.scatter_geo(stations, lat="lat", lon="lon", hover_name="name")
_min_lat = stations.select(pl.col("lat").min()).item()
_max_lat = stations.select(pl.col("lat").max()).item()
_min_lon = stations.select(pl.col("lon").min()).item()
_max_lon = stations.select(pl.col("lon").max()).item()
_fig.update_geos(
lataxis_range=[_min_lat - 0.2, _max_lat + 0.2],
lonaxis_range=[_min_lon - 0.2, _max_lon + 0.2],
resolution=50,
showocean=True,
oceancolor="Lightblue",
)
_fig
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Stations
First, let's take a look at some of the stations. Notice how
- Some stations have been deactivated, so there won't be any data about them (in fact, we don't even know their coordinates)
- There are some columns that do not even contain data at all!
We will remove the empty columns and remove rows without coordinates
"""
)
return
@app.cell(hide_code=True)
def _(dirty_stations, mo, pl):
# If you were working on this yourself, you may want to briefly at *all* of them, but for practical purposes I am taking a slice for the displayed output, as otherwise it would take too much screen space.
# mo.ui.table(dirty_stations, pagination=False)
mo.vstack(
[
mo.md("Before (head and tail sample):"),
pl.concat([dirty_stations.head(3), dirty_stations.tail(3)], how="vertical"),
]
)
return
@app.cell
def _(dirty_stations, mo, pl):
stations = dirty_stations.drop_nulls(subset=("lat", "lon")).drop(pl.col(r"^operation_(start|end)_date$"))
mo.vstack([mo.md("After (full dataframe):"), stations])
return (stations,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Precipitation
Now, let's move on to the Precipitation data.
## Part 1 - Null Values
First of all, let's check for null values:
"""
)
return
@app.cell
def _(dirty_weather, pl):
rain = pl.col("accumulated_rain_15_minutes") # Create an alias since we'll use that column a lot
dirty_weather.filter(rain.is_null())
return (rain,)
@app.cell(hide_code=True)
def _(dirty_weather, mo, rain):
_missing_count = dirty_weather.select(rain.is_null().sum()).item()
mo.md(
f"As you can see, there are {_missing_count:,} rows missing the accumulated rain for a period.\n\nThat could be caused by sensor malfunctions, maintenance, bobby tables or a myriad of other reasons. While it may be a small percentage of the data ({_missing_count / len(dirty_weather):.3%}), it is still important to take it in consideration, one way or the other."
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### First option to fixing it: Dropping data.
We could just remove those rows like we did for the stations, which may be a passable solution for some problems, but is not always the best idea.
```py
dirty_weather.drop_nulls()
```
### Second option to fixing it: Interpolation
Instead of removing these rows, we can use some heuritics to guess values that make sense for them. Remember that this adds a degree of uncertainty to the final results, so you should disclose how you are treating missing values if you draw any conclusions based on such guesses.
```py
dirty_weather.with_columns(rain.fill_null(strategy="forward")),
```
When doing so, which strategy may make sense for your data varies greatly. In some cases you'll want to use the mean to maintain it centered around the same distribution, while in other cases you'll want to zero it to avoid modifying the total, or fill forward/backward to keep it mostly continuous.
### Last option to fixing it: Acquire the correct values from elsewhere.
Like manually adding names to the animals in the introduction, but you could try finding approximate values from another dataset or in some cases manually input the correct values.
### However
Let's investigate a bit more before deciding on following with either approach.
For example, is our current data even complete, or are we already missing some rows beyond those with null values?
"""
)
return
@app.cell
def _(dirty_weather, pl):
seen_counts = dirty_weather.group_by(pl.col("datetime").dt.time(), "station").len()
# Fun fact: a single row has its time set to `23:55`.
# It should not be present in this dataset, but found its way into the official Google Big Query table somehow.
seen_counts = seen_counts.filter(pl.col("len") > 1)
# You may want to treat it as a bug or outlier and remove it from dirty_weather, but we won't dive into cleaning such in this notebook
# seen_counts.sort("station", "datetime").select("station", "datetime", "len")
seen_counts.sort("len").select("station", "datetime", "len")
return
@app.cell
def _(pl):
expected_range = pl.datetime_range(
pl.lit("2020-01-01T00:00:00").str.to_datetime(time_zone="America/Sao_Paulo"),
pl.lit("2022-12-31T23:45:00").str.to_datetime(time_zone="America/Sao_Paulo"),
"15m",
)
pl.select(expected_range).group_by(pl.col.literal.dt.time()).len().sort("literal")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Part 2 - Missing Rows
We can see that we expected there to be 1096 rows for each hour for each station (from the start of 2020 to the end of 2022) , but in reality we see between 1077 and 1096 rows.
That difference could be caused by the same factors as null values, or even by someone dropping null values along the way, but for the purposes of this notebook let's say that we want to have values for each combination with no exceptions, so we'll have to make reasonable assumptions to interpolate and extrapolate them.
### Upsampling
Given that we are working with time series data, we will [upsample](https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.upsample.html) the data, but you could also create a DataFrame containing all expected rows then use `join(how="...")`
However, that will give us _even more_ null values, so we will want to fill them in afterwards. For this case, we will just use a forward fill followed by a backwards fill.
"""
)
return
@app.cell
def _(dirty_weather, mo, pl, rain):
_hollow_weather = dirty_weather.sort("station", "datetime").upsample("datetime", every="15m", group_by="station")
weather = _hollow_weather.fill_null(strategy="forward").fill_null(strategy="backward")
mo.vstack(
[
mo.ui.table(
label="Null counts at each step",
data=pl.concat(
[
dirty_weather.null_count().select(
pl.lit("Before upsampling").alias("label"), rain, "station", "datetime"
),
_hollow_weather.null_count().select(
pl.lit("After upsampling").alias("label"), rain, "station", "datetime"
),
weather.null_count().select(pl.lit("After filling").alias("label"), rain, "station", "datetime"),
]
),
),
mo.md("Data after upsampling and filling in nulls:"),
weather,
]
)
return (weather,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Now that we finally have a clean dataset, let's play around with it a little.
### Example App
Let's display the amount of precipitation each station measured within a timeframe, aggregated to a lower granularity.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
filters = (
mo.md(
"""Filters for the example
Year: {year}
Days of the year: {day}
Hours of each day: {hour}
Aggregation granularity: {interval}
"""
)
.batch(
year=mo.ui.dropdown([2020, 2021, 2022], value=2022),
day=mo.ui.range_slider(1, 365, show_value=True, full_width=True, value=[87, 94]),
hour=mo.ui.range_slider(0, 24, 0.25, show_value=True, full_width=True),
interval=mo.ui.dropdown(["15m", "30m", "1h", "2h", "4h", "6h", "1d", "7d", "30d"], value="4h"),
)
.form()
)
# Note: You could use `mo.ui.date_range` instead, but I just don't like it myself
# mo.ui.date_range(start="2020-01-01", stop="2022-12-31", value=["2022-03-28", "2022-04-03"], label="Display range")
filters
return (filters,)
@app.cell
def _(filters, mo, pl, rain, stations, weather):
mo.stop(filters.value is None)
_range_seconds = map(lambda hour: hour * 3600, filters.value["hour"])
_df_seconds = pl.col("datetime").dt.hour().cast(pl.Float64()).mul(3600) + pl.col("datetime").dt.minute().cast(
pl.Float64()
).mul(60)
animation_data = (
weather.lazy()
.filter(
pl.col("datetime").dt.year() == filters.value["year"],
pl.col("datetime").dt.ordinal_day().is_between(*filters.value["day"]),
_df_seconds.is_between(*_range_seconds),
)
.group_by_dynamic("datetime", group_by="station", every=filters.value["interval"])
.agg(rain.sum().alias("precipitation"))
.remove(pl.col("precipitation").eq(0).all().over("station"))
.join(stations.lazy(), on="station")
.select("name", "lat", "lon", "precipitation", "datetime")
.collect()
)
return (animation_data,)
@app.cell
def _(animation_data, pl, px):
_fig = px.scatter_geo(
animation_data.with_columns(avg_precipitation=pl.col("precipitation").mean()),
lat="lat",
lon="lon",
hover_name="name",
animation_group="name",
animation_frame="datetime",
size="avg_precipitation",
color="precipitation",
color_continuous_scale="PuBu",
range_color=[0, animation_data.select(pl.col("precipitation").max()).item()],
)
_min_lat = animation_data.select(pl.col("lat").min()).item()
_max_lat = animation_data.select(pl.col("lat").max()).item()
_min_lon = animation_data.select(pl.col("lon").min()).item()
_max_lon = animation_data.select(pl.col("lon").max()).item()
_fig.update_geos(
lataxis_range=[_min_lat - 0.2, _max_lat + 0.2],
lonaxis_range=[_min_lon - 0.2, _max_lon + 0.2],
resolution=50,
showocean=True,
oceancolor="Lightblue",
)
_fig
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
If we were missing some rows, we would have circles popping in and out of existence instead of a smooth animation!
In many scenarios, missing data can also lead to wrong results overall, for example if we were to estimate the total amount of rainfall during the observed period:
"""
)
return
@app.cell
def _(dirty_weather, mo, rain, weather):
old_estimate = dirty_weather.select(rain.sum()).item()
new_estimate = weather.select(rain.sum()).item()
# Note: The aggregation used to calculate these variables (taking a sum across all stations) is not very meaningful, but the relative difference between them scales across many potentially useful aggregations
mo.md(f"Our estimates may change by roughly {(new_estimate - old_estimate) / old_estimate:.2%}")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Which is still a relatively small difference, but every drop counts when you are dealing with the weather.
For datasets with a higher share of missing values, that difference can get much higher.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Bonus Content
## Appendix A: Missing Time Zones
The original dataset contained naive datetimes instead of timezone-aware, but we can infer whenever it refers to UTC time or local time (for this case, -03:00 UTC) based on the measurements.
For example, we can select one specific interval during which we know that rained a lot, or graph the average amount of precipitation for each hour of the day, then compare the data timestamps with a ground truth.
"""
)
return
@app.cell(hide_code=True)
def _(dirty_weather_naive, mo):
mo.vstack(
[
mo.md("Original data example:"),
dirty_weather_naive.head(3),
]
)
return
@app.cell
def _(dirty_weather_naive, pl, px, rain):
naive_downfall_per_hour = (
dirty_weather_naive.group_by(pl.col("datetime").dt.hour().alias("hour"))
.agg(rain.sum().alias("accumulated_rain"))
.with_columns(pl.col("accumulated_rain").truediv(pl.col("accumulated_rain").sum()).mul(100))
)
px.bar(
naive_downfall_per_hour.sort("hour"),
x="hour",
y="accumulated_rain",
title="Distribution of precipitation per hour (%), using the naive datetime",
)
return
@app.cell
def _(dirty_weather_naive, pl, rain, stations):
naive_top_rain_events = (
dirty_weather_naive.lazy()
# If you wanted to filter the dates and locate a specific event:
# .filter(pl.col("datetime").is_between(pl.lit("2022-03-01").str.to_datetime(), pl.lit("2022-05-01").str.to_datetime()))
.sort("station", "datetime")
.group_by_dynamic("datetime", every="1h", offset="30m", group_by="station")
.agg(rain.sum())
.join(stations.lazy(), on="station")
.sort(rain, descending=True)
.select(
"name",
pl.col("datetime").alias("window_start"),
(pl.col("datetime") + pl.duration(hours=1)).alias("window_end"),
rain.alias("accumulated rain"),
)
.head(50)
.collect()
)
naive_top_rain_events
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
By externally researching the expected distribution and looking up some of the extreme weather events, we can come to a conclusion about whenever it is aligned with the local time or with UTC.
In this case, the distribution matches the normal weather for this region and we can see that the hours with the most precipitation match those of historical events, so it is safe to say it is using local time (equivalent to the Americas/São Paulo time zone).
"""
)
return
@app.cell
def _(dirty_weather_naive, pl):
dirty_weather = dirty_weather_naive.with_columns(pl.col("datetime").dt.replace_time_zone("America/Sao_Paulo"))
dirty_weather.head(3)
return (dirty_weather,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Appendix B: Not a Number
While some other tools without proper support for missing values may use `NaN` as a way to indicate a value is missing, in polars it is treated exclusively as a float value, much like `0.0`, `1.0` or `infinity`.
You can use `.fill_null(float('nan'))` if you need to convert floats to a format such tools accept, or use `.fill_nan(None)` if you are importing data from them, assuming that there are no values which really are supposed to be the float NaN.
Remember that many calculations can result in NaN, for example dividing by zero:
"""
)
return
@app.cell
def _(dirty_weather, pl, rain):
day_perc = dirty_weather.select(
"datetime",
(rain / rain.sum().over("station", pl.col("datetime").dt.date())).alias("percentage_of_day_precipitation"),
)
perc_col = pl.col("percentage_of_day_precipitation")
day_perc
return day_perc, perc_col
@app.cell(hide_code=True)
def _(day_perc, mo, perc_col):
mo.md(
f"""
It is null for {day_perc.select(perc_col.is_null().mean()).item():.4%} of the rows, but is NaN for {day_perc.select(perc_col.is_nan().mean()).item():.4%} of them.
If we use the cleaned weather dataframe to calculate it instead of the dirty_weather, we will have no nulls, but note how for this calculation we can end up with both, with each having a different meaning.
In this case it makes sense to fill in NaNs as 0 to indicate there was no rain during that period, but treating the nulls the same could lead to a different interpretation of the data, so remember to handle NaNs and nulls separately.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Appendix C: Everything else
As long as this Notebook is, it cannot reasonably cover ***everything*** that may have to deal with missing values, as that is literally everything that may have to deal with data.
This section very briefly covers some other features not mentioned above
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Missing values in Aggregations
Many aggregations methods will ignore/skip missing values, while others take them into consideration.
Always check the documentation of the method you're using, much of the time docstrings will explain their behaviour.
"""
)
return
@app.cell
def _(df, pl):
df.group_by("species").agg(
pl.col("height").len().alias("len"),
pl.col("height").count().alias("count"),
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Missing values in Joins
By default null values will never produce matches using [join](https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.join.html), but you can specify `nulls_equal=True` to join Null values with each other.
"""
)
return
@app.cell(hide_code=True)
def _(pl):
age_groups = pl.DataFrame(
[
{"age": None, "stage": "Unknown"},
{"age": [0, 1], "stage": "Baby"},
{"age": [2, 3, 4, 5, 6, 7, 8, 9, 10], "stage": "Adult"},
{"age": [11, 12, 13, 14], "stage": "Senior"},
{"age": [15, 16, 17, 18, 19, 20], "stage": "Geriatric"},
]
)
age_groups
return (age_groups,)
@app.cell
def _(age_groups, df):
df.join(age_groups.explode("age"), on="age")
return
@app.cell
def _(age_groups, df):
df.join(age_groups.explode("age"), on="age", nulls_equal=True)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Utilities
Loading data and imports
"""
)
return
@app.cell
def _(pl):
raw_stations = pl.scan_csv("hf://datasets/etrotta/weather-alertario/datario_alertario_stations.csv")
raw_weather = pl.scan_csv("hf://datasets/etrotta/weather-alertario/datario_alertario_weather_2020_to_2022.csv")
return raw_stations, raw_weather
@app.cell
def _(pl, raw_stations):
dirty_stations = raw_stations.select(
pl.col("id_estacao").alias("station"),
pl.col("estacao").alias("name"),
pl.col("latitude").alias("lat"),
pl.col("longitude").alias("lon"),
pl.col("cota").alias("altitude"),
pl.col("situacao").alias("situation"),
pl.col("endereco").alias("address"),
pl.col("data_inicio_operacao").alias("operation_start_date"),
pl.col("data_fim_operacao").alias("operation_end_date"),
).collect()
return (dirty_stations,)
@app.cell
def _(pl, raw_weather):
dirty_weather_naive = raw_weather.select(
pl.col("id_estacao").alias("station"),
pl.col("acumulado_chuva_15_min").alias("accumulated_rain_15_minutes"),
pl.concat_str("data_particao", pl.lit("T"), "horario").str.to_datetime(time_zone=None).alias("datetime"),
).collect()
return (dirty_weather_naive,)
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _():
import polars as pl
return (pl,)
@app.cell
def _():
import plotly.express as px
return (px,)
if __name__ == "__main__":
app.run()
|