Spaces:
Running
Running
| # /// script | |
| # requires-python = ">=3.13" | |
| # dependencies = [ | |
| # "cvxpy==1.6.0", | |
| # "marimo", | |
| # "matplotlib==3.10.0", | |
| # "numpy==2.2.2", | |
| # "wigglystuff==0.1.9", | |
| # ] | |
| # /// | |
| import marimo | |
| __generated_with = "0.11.0" | |
| app = marimo.App() | |
| def _(): | |
| import marimo as mo | |
| return (mo,) | |
| def _(mo): | |
| mo.md( | |
| r""" | |
| # Quadratic program | |
| A quadratic program is an optimization problem with a quadratic objective and | |
| affine equality and inequality constraints. A common standard form is the | |
| following: | |
| \[ | |
| \begin{array}{ll} | |
| \text{minimize} & (1/2)x^TPx + q^Tx\\ | |
| \text{subject to} & Gx \leq h \\ | |
| & Ax = b. | |
| \end{array} | |
| \] | |
| Here $P \in \mathcal{S}^{n}_+$, $q \in \mathcal{R}^n$, $G \in \mathcal{R}^{m \times n}$, $h \in \mathcal{R}^m$, $A \in \mathcal{R}^{p \times n}$, and $b \in \mathcal{R}^p$ are problem data and $x \in \mathcal{R}^{n}$ is the optimization variable. The inequality constraint $Gx \leq h$ is elementwise. | |
| **Why quadratic programming?** Quadratic programs are convex optimization problems that generalize both least-squares and linear programming.They can be solved efficiently and reliably, even in real-time. | |
| **An example from finance.** A simple example of a quadratic program arises in finance. Suppose we have $n$ different stocks, an estimate $r \in \mathcal{R}^n$ of the expected return on each stock, and an estimate $\Sigma \in \mathcal{S}^{n}_+$ of the covariance of the returns. Then we solve the optimization problem | |
| \[ | |
| \begin{array}{ll} | |
| \text{minimize} & (1/2)x^T\Sigma x - r^Tx\\ | |
| \text{subject to} & x \geq 0 \\ | |
| & \mathbf{1}^Tx = 1, | |
| \end{array} | |
| \] | |
| to find a nonnegative portfolio allocation $x \in \mathcal{R}^n_+$ that optimally balances expected return and variance of return. | |
| When we solve a quadratic program, in addition to a solution $x^\star$, we obtain a dual solution $\lambda^\star$ corresponding to the inequality constraints. A positive entry $\lambda^\star_i$ indicates that the constraint $g_i^Tx \leq h_i$ holds with equality for $x^\star$ and suggests that changing $h_i$ would change the optimal value. | |
| """ | |
| ) | |
| return | |
| def _(mo): | |
| mo.md( | |
| r""" | |
| ## Example | |
| In this example, we use CVXPY to construct and solve a quadratic program. | |
| """ | |
| ) | |
| return | |
| def _(): | |
| import cvxpy as cp | |
| import numpy as np | |
| return cp, np | |
| def _(mo): | |
| mo.md("""First we generate synthetic data. In this problem, we don't include equality constraints, only inequality.""") | |
| return | |
| def _(np): | |
| m = 4 | |
| n = 2 | |
| np.random.seed(1) | |
| q = np.random.randn(n) | |
| G = np.random.randn(m, n) | |
| h = G @ np.random.randn(n) | |
| return G, h, m, n, q | |
| def _(mo, np): | |
| import wigglystuff | |
| P_widget = mo.ui.anywidget( | |
| wigglystuff.Matrix(np.array([[4.0, -1.4], [-1.4, 4]]), step=0.1) | |
| ) | |
| mo.md( | |
| f""" | |
| The quadratic form $P$ is equal to the symmetrized version of this | |
| matrix: | |
| {P_widget.center()} | |
| """ | |
| ) | |
| return P_widget, wigglystuff | |
| def _(P_widget, np): | |
| P = 0.5 * (np.array(P_widget.matrix) + np.array(P_widget.matrix).T) | |
| return (P,) | |
| def _(mo): | |
| mo.md(r"""Next, we specify the problem. Notice that we use the `quad_form` function from CVXPY to create the quadratic form $x^TPx$.""") | |
| return | |
| def _(G, P, cp, h, n, q): | |
| x = cp.Variable(n) | |
| problem = cp.Problem( | |
| cp.Minimize((1 / 2) * cp.quad_form(x, P) + q.T @ x), | |
| [G @ x <= h], | |
| ) | |
| _ = problem.solve() | |
| return problem, x | |
| def _(mo, problem, x): | |
| mo.md( | |
| f""" | |
| The optimal value is {problem.value:.04f}. | |
| A solution $x$ is {mo.as_html(list(x.value))} | |
| A dual solution is is {mo.as_html(list(problem.constraints[0].dual_value))} | |
| """ | |
| ) | |
| return | |
| def _(G, P, h, plot_contours, q, x): | |
| plot_contours(P, G, h, q, x.value) | |
| return | |
| def _(mo): | |
| mo.md( | |
| r""" | |
| In this plot, the gray shaded region is the feasible region (points satisfying the inequality), and the ellipses are level curves of the quadratic form. | |
| **🌊 Try it!** Try changing the entries of $P$ above with your mouse. How do the | |
| level curves and the optimal value of $x$ change? Can you explain what you see? | |
| """ | |
| ) | |
| return | |
| def _(P, mo): | |
| mo.md( | |
| rf""" | |
| The above contour lines were generated with | |
| \[ | |
| P= \begin{{bmatrix}} | |
| {P[0, 0]:.01f} & {P[0, 1]:.01f} \\ | |
| {P[1, 0]:.01f} & {P[1, 1]:.01f} \\ | |
| \end{{bmatrix}} | |
| \] | |
| """ | |
| ) | |
| return | |
| def _(np): | |
| def plot_contours(P, G, h, q, x_star): | |
| import matplotlib.pyplot as plt | |
| # Create a grid of x and y values. | |
| x = np.linspace(-5, 5, 400) | |
| y = np.linspace(-5, 5, 400) | |
| X, Y = np.meshgrid(x, y) | |
| # Compute the quadratic form Q(x, y) = a*x^2 + 2*b*x*y + c*y^2. | |
| # Here, a = P[0,0], b = P[0,1] (and P[1,0]), c = P[1,1] | |
| Z = ( | |
| 0.5 * (P[0, 0] * X**2 + 2 * P[0, 1] * X * Y + P[1, 1] * Y**2) | |
| + q[0] * X | |
| + q[1] * Y | |
| ) | |
| # --- Evaluate the constraints on the grid --- | |
| # We stack X and Y to get a list of (x,y) points. | |
| points = np.vstack([X.ravel(), Y.ravel()]).T | |
| # Start with all points feasible | |
| feasible = np.ones(points.shape[0], dtype=bool) | |
| # Apply the inequality constraints Gx <= h. | |
| # Each row of G and corresponding h defines a condition. | |
| for i in range(G.shape[0]): | |
| # For a given point x, the condition is: G[i,0]*x + G[i,1]*y <= h[i] | |
| feasible &= points.dot(G[i]) <= h[i] + 1e-8 # small tolerance | |
| # Reshape the boolean mask back to grid shape. | |
| feasible_grid = feasible.reshape(X.shape) | |
| # --- Plot the feasible region and contour lines--- | |
| plt.figure(figsize=(8, 6)) | |
| # Use contourf to fill the region where feasible_grid is True. | |
| # We define two levels, so that points that are True (feasible) get one | |
| # color. | |
| plt.contourf( | |
| X, | |
| Y, | |
| feasible_grid, | |
| levels=[-0.5, 0.5, 1.5], | |
| colors=["white", "gray"], | |
| alpha=0.5, | |
| ) | |
| contours = plt.contour(X, Y, Z, levels=10, cmap="viridis") | |
| plt.clabel(contours, inline=True, fontsize=8) | |
| plt.title("Feasible region and level curves") | |
| plt.xlabel("$x_1$") | |
| plt.ylabel("$y_2$") | |
| # plt.colorbar(contours, label='Q(x, y)') | |
| ax = plt.gca() | |
| # Optionally, mark and label the point x_star. | |
| ax.plot(x_star[0], x_star[1], "ko", markersize=5) | |
| ax.text( | |
| x_star[0], | |
| x_star[1], | |
| r"$\mathbf{x}^\star$", | |
| color="black", | |
| fontsize=12, | |
| verticalalignment="bottom", | |
| horizontalalignment="right", | |
| ) | |
| return plt.gca() | |
| return (plot_contours,) | |
| if __name__ == "__main__": | |
| app.run() | |