Spaces:
Running
Running
Henry Harbeck
commited on
Commit
·
b62cbdd
1
Parent(s):
c080865
update marimo version, move import to bottom
Browse files- polars/13_window_functions.py +107 -105
polars/13_window_functions.py
CHANGED
@@ -11,28 +11,22 @@
|
|
11 |
|
12 |
import marimo
|
13 |
|
14 |
-
__generated_with = "0.
|
15 |
app = marimo.App(width="medium", app_title="Window Functions")
|
16 |
|
17 |
|
18 |
-
@app.cell
|
19 |
-
def _():
|
20 |
-
import marimo as mo
|
21 |
-
return (mo,)
|
22 |
-
|
23 |
-
|
24 |
@app.cell(hide_code=True)
|
25 |
def _(mo):
|
26 |
mo.md(
|
27 |
r"""
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
)
|
37 |
return
|
38 |
|
@@ -54,23 +48,23 @@ def _():
|
|
54 |
)
|
55 |
|
56 |
df
|
57 |
-
return date,
|
58 |
|
59 |
|
60 |
@app.cell(hide_code=True)
|
61 |
def _(mo):
|
62 |
mo.md(
|
63 |
r"""
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
)
|
75 |
return
|
76 |
|
@@ -79,10 +73,10 @@ def _(mo):
|
|
79 |
def _(mo):
|
80 |
mo.md(
|
81 |
r"""
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
)
|
87 |
return
|
88 |
|
@@ -91,10 +85,10 @@ def _(mo):
|
|
91 |
def _(mo):
|
92 |
mo.md(
|
93 |
r"""
|
94 |
-
|
95 |
|
96 |
-
|
97 |
-
|
98 |
)
|
99 |
return
|
100 |
|
@@ -109,7 +103,9 @@ def _(df, pl):
|
|
109 |
|
110 |
@app.cell(hide_code=True)
|
111 |
def _(mo):
|
112 |
-
mo.md(
|
|
|
|
|
113 |
return
|
114 |
|
115 |
|
@@ -123,9 +119,9 @@ def _(daily_revenue, df, pl):
|
|
123 |
def _(mo):
|
124 |
mo.md(
|
125 |
r"""
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
)
|
130 |
return
|
131 |
|
@@ -145,10 +141,10 @@ def _(df, pl):
|
|
145 |
def _(mo):
|
146 |
mo.md(
|
147 |
r"""
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
)
|
153 |
return
|
154 |
|
@@ -157,13 +153,13 @@ def _(mo):
|
|
157 |
def _(mo):
|
158 |
mo.md(
|
159 |
r"""
|
160 |
-
|
161 |
|
162 |
-
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
)
|
168 |
return
|
169 |
|
@@ -184,12 +180,12 @@ def _(df, pl):
|
|
184 |
def _(mo):
|
185 |
mo.md(
|
186 |
r"""
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
-
|
193 |
)
|
194 |
return
|
195 |
|
@@ -208,10 +204,10 @@ def _(df, pl):
|
|
208 |
def _(mo):
|
209 |
mo.md(
|
210 |
r"""
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
)
|
216 |
return
|
217 |
|
@@ -220,14 +216,14 @@ def _(mo):
|
|
220 |
def _(mo):
|
221 |
mo.md(
|
222 |
r"""
|
223 |
-
|
224 |
|
225 |
-
|
226 |
-
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
)
|
232 |
return
|
233 |
|
@@ -236,11 +232,11 @@ def _(mo):
|
|
236 |
def _(mo):
|
237 |
mo.md(
|
238 |
"""
|
239 |
-
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
)
|
245 |
return
|
246 |
|
@@ -269,13 +265,13 @@ def _(df, pl):
|
|
269 |
def _(mo):
|
270 |
mo.md(
|
271 |
r"""
|
272 |
-
|
273 |
|
274 |
-
|
275 |
-
|
276 |
|
277 |
-
|
278 |
-
|
279 |
)
|
280 |
return
|
281 |
|
@@ -301,9 +297,9 @@ def _(df, mo):
|
|
301 |
def _(mo):
|
302 |
mo.md(
|
303 |
r"""
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
)
|
308 |
return
|
309 |
|
@@ -323,10 +319,10 @@ def _(df, pl):
|
|
323 |
def _(mo):
|
324 |
mo.md(
|
325 |
r"""
|
326 |
-
|
327 |
|
328 |
-
|
329 |
-
|
330 |
)
|
331 |
return
|
332 |
|
@@ -356,13 +352,13 @@ def _(df_sorted, pl):
|
|
356 |
def _(mo):
|
357 |
mo.md(
|
358 |
"""
|
359 |
-
|
360 |
|
361 |
-
|
362 |
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
)
|
367 |
return
|
368 |
|
@@ -371,11 +367,11 @@ def _(mo):
|
|
371 |
def _(mo):
|
372 |
mo.md(
|
373 |
"""
|
374 |
-
|
375 |
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
)
|
380 |
return
|
381 |
|
@@ -392,10 +388,10 @@ def _(df, pl):
|
|
392 |
def _(mo):
|
393 |
mo.md(
|
394 |
"""
|
395 |
-
|
396 |
|
397 |
-
|
398 |
-
|
399 |
)
|
400 |
return
|
401 |
|
@@ -412,14 +408,14 @@ def _(df, pl):
|
|
412 |
def _(mo):
|
413 |
mo.md(
|
414 |
r"""
|
415 |
-
|
416 |
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
|
421 |
-
|
422 |
-
|
423 |
)
|
424 |
return
|
425 |
|
@@ -451,11 +447,11 @@ def _(mo):
|
|
451 |
def _(mo):
|
452 |
mo.md(
|
453 |
r"""
|
454 |
-
|
455 |
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
)
|
460 |
return
|
461 |
|
@@ -474,21 +470,21 @@ def _(df_sorted, pl):
|
|
474 |
daily_revenue_rank=pl.col("revenue").rank().over(**window),
|
475 |
cumulative_daily_revenue=pl.col("revenue").cum_sum().over(**window),
|
476 |
)
|
477 |
-
return
|
478 |
|
479 |
|
480 |
@app.cell(hide_code=True)
|
481 |
def _(mo):
|
482 |
mo.md(
|
483 |
r"""
|
484 |
-
|
485 |
|
486 |
-
|
487 |
-
|
488 |
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
)
|
493 |
return
|
494 |
|
@@ -524,15 +520,21 @@ def _(mo):
|
|
524 |
def _(mo):
|
525 |
mo.md(
|
526 |
r"""
|
527 |
-
|
528 |
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
)
|
534 |
return
|
535 |
|
536 |
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
if __name__ == "__main__":
|
538 |
app.run()
|
|
|
11 |
|
12 |
import marimo
|
13 |
|
14 |
+
__generated_with = "0.13.11"
|
15 |
app = marimo.App(width="medium", app_title="Window Functions")
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
@app.cell(hide_code=True)
|
19 |
def _(mo):
|
20 |
mo.md(
|
21 |
r"""
|
22 |
+
# Window Functions
|
23 |
+
_By [Henry Harbeck](https://github.com/henryharbeck)._
|
24 |
|
25 |
+
In this notebook, you'll learn how to perform different types of window functions in Polars.
|
26 |
+
You'll work with partitions, ordering and Polars' available "mapping strategies".
|
27 |
|
28 |
+
We'll use a dataset with a few days of paid and organic digital revenue data.
|
29 |
+
"""
|
30 |
)
|
31 |
return
|
32 |
|
|
|
48 |
)
|
49 |
|
50 |
df
|
51 |
+
return date, df, pl
|
52 |
|
53 |
|
54 |
@app.cell(hide_code=True)
|
55 |
def _(mo):
|
56 |
mo.md(
|
57 |
r"""
|
58 |
+
## What is a window function?
|
59 |
|
60 |
+
A window function performs a calculation across a set of rows that are related to the current row.
|
61 |
+
They allow you to perform aggregations and other calculations within a group without collapsing
|
62 |
+
the number of rows (opposed to a group by aggregation, which does collapse the number of rows). Typically the result of a
|
63 |
+
window function is assigned back to rows within the group, but Polars also offers additional alternatives.
|
64 |
|
65 |
+
Window functions can be used by specifying the [`over`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.over.html)
|
66 |
+
method on an expression.
|
67 |
+
"""
|
68 |
)
|
69 |
return
|
70 |
|
|
|
73 |
def _(mo):
|
74 |
mo.md(
|
75 |
r"""
|
76 |
+
## Partitions
|
77 |
+
Partitions are the "group by" columns. We will have one "window" of data per unique value in the partition column(s), to
|
78 |
+
which the function will be applied.
|
79 |
+
"""
|
80 |
)
|
81 |
return
|
82 |
|
|
|
85 |
def _(mo):
|
86 |
mo.md(
|
87 |
r"""
|
88 |
+
### Partitioning by a single column
|
89 |
|
90 |
+
Let's get the total revenue per date...
|
91 |
+
"""
|
92 |
)
|
93 |
return
|
94 |
|
|
|
103 |
|
104 |
@app.cell(hide_code=True)
|
105 |
def _(mo):
|
106 |
+
mo.md(
|
107 |
+
r"""And then see what percentage of the daily total was Paid and what percentage was Organic."""
|
108 |
+
)
|
109 |
return
|
110 |
|
111 |
|
|
|
119 |
def _(mo):
|
120 |
mo.md(
|
121 |
r"""
|
122 |
+
Let's now calculate the maximum revenue, cumulative revenue, rank the revenue and calculate the day-on-day change,
|
123 |
+
all partitioned (split) by channel.
|
124 |
+
"""
|
125 |
)
|
126 |
return
|
127 |
|
|
|
141 |
def _(mo):
|
142 |
mo.md(
|
143 |
r"""
|
144 |
+
Note that aggregation functions such as `sum` and `max` have their value applied back to each row in the partition
|
145 |
+
(group). Non-aggregate functions such as `cum_sum`, `rank` and `diff` can produce different values per row, but
|
146 |
+
still only consider rows within their partition.
|
147 |
+
"""
|
148 |
)
|
149 |
return
|
150 |
|
|
|
153 |
def _(mo):
|
154 |
mo.md(
|
155 |
r"""
|
156 |
+
### Partitioning by multiple columns
|
157 |
|
158 |
+
We can also partition by multiple columns.
|
159 |
|
160 |
+
Let's add a column to see whether it is a weekday (business day), then get the maximum revenue by that and
|
161 |
+
the channel.
|
162 |
+
"""
|
163 |
)
|
164 |
return
|
165 |
|
|
|
180 |
def _(mo):
|
181 |
mo.md(
|
182 |
r"""
|
183 |
+
### Partitioning by expressions
|
184 |
|
185 |
+
Polars also lets you partition by expressions without needing to create them as columns first.
|
186 |
|
187 |
+
So, we could re-write the previous window function as...
|
188 |
+
"""
|
189 |
)
|
190 |
return
|
191 |
|
|
|
204 |
def _(mo):
|
205 |
mo.md(
|
206 |
r"""
|
207 |
+
Window functions fit into Polars' composable [expressions API](https://docs.pola.rs/user-guide/concepts/expressions-and-contexts/#expressions),
|
208 |
+
so can be combined with all [aggregation methods](https://docs.pola.rs/api/python/stable/reference/expressions/aggregation.html)
|
209 |
+
and methods that consider more than 1 row (e.g., `cum_sum`, `rank` and `diff` as we just saw).
|
210 |
+
"""
|
211 |
)
|
212 |
return
|
213 |
|
|
|
216 |
def _(mo):
|
217 |
mo.md(
|
218 |
r"""
|
219 |
+
## Ordering
|
220 |
|
221 |
+
The `order_by` parameter controls how to order the data within the window. The function is applied to the data in this
|
222 |
+
order.
|
223 |
|
224 |
+
Up until this point, we have been letting Polars do the window function calculations based on the order of the rows in the
|
225 |
+
DataFrame. There can be times where we would like order of the calculation and the order of the output itself to differ.
|
226 |
+
"""
|
227 |
)
|
228 |
return
|
229 |
|
|
|
232 |
def _(mo):
|
233 |
mo.md(
|
234 |
"""
|
235 |
+
### Ordering in a window function
|
236 |
|
237 |
+
Let's say we want the DataFrame ordered by day of week, but we still want cumulative revenue and the first revenue observation, both
|
238 |
+
ordered by date and partitioned by channel...
|
239 |
+
"""
|
240 |
)
|
241 |
return
|
242 |
|
|
|
265 |
def _(mo):
|
266 |
mo.md(
|
267 |
r"""
|
268 |
+
### Note about window function ordering compared to SQL
|
269 |
|
270 |
+
It is worth noting that traditionally in SQL, many more functions require an `ORDER BY` within `OVER` than in
|
271 |
+
equivalent functions in Polars.
|
272 |
|
273 |
+
For example, an SQL `RANK()` expression like...
|
274 |
+
"""
|
275 |
)
|
276 |
return
|
277 |
|
|
|
297 |
def _(mo):
|
298 |
mo.md(
|
299 |
r"""
|
300 |
+
...does not require an `order_by` in Polars as the column and the function are already bound (including with the
|
301 |
+
`descending=True` argument).
|
302 |
+
"""
|
303 |
)
|
304 |
return
|
305 |
|
|
|
319 |
def _(mo):
|
320 |
mo.md(
|
321 |
r"""
|
322 |
+
### Descending order
|
323 |
|
324 |
+
We can also order in descending order by passing `descending=True`...
|
325 |
+
"""
|
326 |
)
|
327 |
return
|
328 |
|
|
|
352 |
def _(mo):
|
353 |
mo.md(
|
354 |
"""
|
355 |
+
## Mapping Strategies
|
356 |
|
357 |
+
Mapping Strategies control how Polars maps the result of the window function back to the original DataFrame
|
358 |
|
359 |
+
Generally (by default) the result of a window function is assigned back to rows within the group. Through Polars' mapping
|
360 |
+
strategies, we will explore other possibilities.
|
361 |
+
"""
|
362 |
)
|
363 |
return
|
364 |
|
|
|
367 |
def _(mo):
|
368 |
mo.md(
|
369 |
"""
|
370 |
+
### Group to rows
|
371 |
|
372 |
+
"group_to_rows" is the default mapping strategy and assigns the result of the window function back to the rows in the
|
373 |
+
window.
|
374 |
+
"""
|
375 |
)
|
376 |
return
|
377 |
|
|
|
388 |
def _(mo):
|
389 |
mo.md(
|
390 |
"""
|
391 |
+
### Join
|
392 |
|
393 |
+
The "join" mapping strategy aggregates the resulting values in a list and repeats the list for all rows in the group.
|
394 |
+
"""
|
395 |
)
|
396 |
return
|
397 |
|
|
|
408 |
def _(mo):
|
409 |
mo.md(
|
410 |
r"""
|
411 |
+
### Explode
|
412 |
|
413 |
+
The "explode" mapping strategy is similar to "group_to_rows", but is typically faster and does not preserve the order of
|
414 |
+
rows. Due to this, it requires sorting columns (including those not in the window function) for the result to make sense.
|
415 |
+
It should also only be used in a `select` context and not `with_columns`.
|
416 |
|
417 |
+
The result of "explode" is similar to a `group_by` followed by an `agg` followed by an `explode`.
|
418 |
+
"""
|
419 |
)
|
420 |
return
|
421 |
|
|
|
447 |
def _(mo):
|
448 |
mo.md(
|
449 |
r"""
|
450 |
+
### Reusing a window
|
451 |
|
452 |
+
In SQL there is a `WINDOW` keyword, which easily allows the re-use of the same window specification across expressions
|
453 |
+
without needing to repeat it. In Polars, this can be achieved by using `dict` unpacking to pass arguments to `over`.
|
454 |
+
"""
|
455 |
)
|
456 |
return
|
457 |
|
|
|
470 |
daily_revenue_rank=pl.col("revenue").rank().over(**window),
|
471 |
cumulative_daily_revenue=pl.col("revenue").cum_sum().over(**window),
|
472 |
)
|
473 |
+
return
|
474 |
|
475 |
|
476 |
@app.cell(hide_code=True)
|
477 |
def _(mo):
|
478 |
mo.md(
|
479 |
r"""
|
480 |
+
### Rolling Windows
|
481 |
|
482 |
+
Much like in SQL, Polars also gives you the ability to do rolling window computations. In Polars, the rolling calculation
|
483 |
+
is also aware of temporal data, making it easy to express if the data is not contiguous (i.e., observations are missing).
|
484 |
|
485 |
+
Let's look at an example of that now by filtering out one day of our data and then calculating both a 3-day and 3-row
|
486 |
+
max revenue split by channel...
|
487 |
+
"""
|
488 |
)
|
489 |
return
|
490 |
|
|
|
520 |
def _(mo):
|
521 |
mo.md(
|
522 |
r"""
|
523 |
+
## Additional References
|
524 |
|
525 |
+
- [Polars User guide - Window functions](https://docs.pola.rs/user-guide/expressions/window-functions/)
|
526 |
+
- [Polars over method API reference](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.over.html)
|
527 |
+
- [PostgreSQL window function documentation](https://www.postgresql.org/docs/current/tutorial-window.html)
|
528 |
+
"""
|
529 |
)
|
530 |
return
|
531 |
|
532 |
|
533 |
+
@app.cell(hide_code=True)
|
534 |
+
def _():
|
535 |
+
import marimo as mo
|
536 |
+
return (mo,)
|
537 |
+
|
538 |
+
|
539 |
if __name__ == "__main__":
|
540 |
app.run()
|