Spaces:
Running
Running
Merge pull request #6 from marimo-team/haleshot/advanced-collections
Browse files
Python/phase_3/advanced_collections.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "marimo",
|
| 5 |
+
# ]
|
| 6 |
+
# ///
|
| 7 |
+
|
| 8 |
+
import marimo
|
| 9 |
+
|
| 10 |
+
__generated_with = "0.10.14"
|
| 11 |
+
app = marimo.App()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@app.cell
|
| 15 |
+
def _():
|
| 16 |
+
import marimo as mo
|
| 17 |
+
return (mo,)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@app.cell(hide_code=True)
|
| 21 |
+
def _(mo):
|
| 22 |
+
mo.md(
|
| 23 |
+
"""
|
| 24 |
+
# 🔄 Advanced Collections in Python
|
| 25 |
+
|
| 26 |
+
Let's dive deep into advanced collection handling in Python!
|
| 27 |
+
|
| 28 |
+
## Lists of Dictionaries
|
| 29 |
+
A common pattern in data handling is working with lists of dictionaries -
|
| 30 |
+
perfect for representing structured data like records or entries.
|
| 31 |
+
"""
|
| 32 |
+
)
|
| 33 |
+
return
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@app.cell
|
| 37 |
+
def _():
|
| 38 |
+
# Sample data: List of user records
|
| 39 |
+
users_data = [
|
| 40 |
+
{"id": 1, "name": "Alice", "skills": ["Python", "SQL"]},
|
| 41 |
+
{"id": 2, "name": "Bob", "skills": ["JavaScript", "HTML"]},
|
| 42 |
+
{"id": 3, "name": "Charlie", "skills": ["Python", "Java"]}
|
| 43 |
+
]
|
| 44 |
+
return (users_data,)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
@app.cell(hide_code=True)
|
| 48 |
+
def _(mo):
|
| 49 |
+
mo.md(
|
| 50 |
+
"""
|
| 51 |
+
## Working with Lists of Dictionaries
|
| 52 |
+
|
| 53 |
+
Let's explore common operations on structured data.
|
| 54 |
+
Try modifying the `users_data` above and see how the results change!
|
| 55 |
+
"""
|
| 56 |
+
)
|
| 57 |
+
return
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
@app.cell
|
| 61 |
+
def _(users_data):
|
| 62 |
+
# Finding users with specific skills
|
| 63 |
+
python_users = [user["name"] for user in users_data if "Python" in user["skills"]]
|
| 64 |
+
print("Python developers:", python_users)
|
| 65 |
+
return (python_users,)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
@app.cell(hide_code=True)
|
| 69 |
+
def _(mo):
|
| 70 |
+
mo.md("""
|
| 71 |
+
## Nested Data Structures
|
| 72 |
+
|
| 73 |
+
Python collections can be nested in various ways to represent complex data:
|
| 74 |
+
""")
|
| 75 |
+
return
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@app.cell
|
| 79 |
+
def _():
|
| 80 |
+
# Complex nested structure
|
| 81 |
+
project_data = {
|
| 82 |
+
"web_app": {
|
| 83 |
+
"frontend": ["HTML", "CSS", "React"],
|
| 84 |
+
"backend": {
|
| 85 |
+
"languages": ["Python", "Node.js"],
|
| 86 |
+
"databases": ["MongoDB", "PostgreSQL"]
|
| 87 |
+
}
|
| 88 |
+
},
|
| 89 |
+
"mobile_app": {
|
| 90 |
+
"platforms": ["iOS", "Android"],
|
| 91 |
+
"technologies": {
|
| 92 |
+
"iOS": ["Swift", "SwiftUI"],
|
| 93 |
+
"Android": ["Kotlin", "Jetpack Compose"]
|
| 94 |
+
}
|
| 95 |
+
}
|
| 96 |
+
}
|
| 97 |
+
return (project_data,)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
@app.cell
|
| 101 |
+
def _(project_data):
|
| 102 |
+
# Nested data accessing
|
| 103 |
+
backend_langs = project_data["web_app"]["backend"]["languages"]
|
| 104 |
+
print("Backend languages:", backend_langs)
|
| 105 |
+
|
| 106 |
+
ios_tech = project_data["mobile_app"]["technologies"]["iOS"]
|
| 107 |
+
print("iOS technologies:", ios_tech)
|
| 108 |
+
return backend_langs, ios_tech
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@app.cell(hide_code=True)
|
| 112 |
+
def _(mo):
|
| 113 |
+
mo.md("""
|
| 114 |
+
## Data Transformation
|
| 115 |
+
|
| 116 |
+
Let's explore how to transform and reshape collection data:
|
| 117 |
+
""")
|
| 118 |
+
return
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
@app.cell
|
| 122 |
+
def _():
|
| 123 |
+
# Data-sample for transformation
|
| 124 |
+
sales_data = [
|
| 125 |
+
{"date": "2024-01", "product": "A", "units": 100},
|
| 126 |
+
{"date": "2024-01", "product": "B", "units": 150},
|
| 127 |
+
{"date": "2024-02", "product": "A", "units": 120},
|
| 128 |
+
{"date": "2024-02", "product": "B", "units": 130}
|
| 129 |
+
]
|
| 130 |
+
return (sales_data,)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
@app.cell
|
| 134 |
+
def _(sales_data):
|
| 135 |
+
# Transform to product-based structure
|
| 136 |
+
product_sales = {}
|
| 137 |
+
for sale in sales_data:
|
| 138 |
+
if sale["product"] not in product_sales:
|
| 139 |
+
product_sales[sale["product"]] = []
|
| 140 |
+
product_sales[sale["product"]].append({
|
| 141 |
+
"date": sale["date"],
|
| 142 |
+
"units": sale["units"]
|
| 143 |
+
})
|
| 144 |
+
|
| 145 |
+
print("Sales by product:", product_sales)
|
| 146 |
+
return product_sales, sale
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
@app.cell(hide_code=True)
|
| 150 |
+
def _(mo):
|
| 151 |
+
mo.md("""
|
| 152 |
+
## Collection Utilities
|
| 153 |
+
|
| 154 |
+
Python's collections module provides specialized container datatypes:
|
| 155 |
+
|
| 156 |
+
```python
|
| 157 |
+
from collections import defaultdict, Counter, deque
|
| 158 |
+
|
| 159 |
+
# defaultdict - dictionary with default factory
|
| 160 |
+
word_count = defaultdict(int)
|
| 161 |
+
for word in words:
|
| 162 |
+
word_count[word] += 1
|
| 163 |
+
|
| 164 |
+
# Counter - count hashable objects
|
| 165 |
+
colors = Counter(['red', 'blue', 'red', 'green', 'blue', 'blue'])
|
| 166 |
+
print(colors.most_common(2)) # Top 2 most common colors
|
| 167 |
+
|
| 168 |
+
# deque - double-ended queue
|
| 169 |
+
history = deque(maxlen=10) # Only keeps last 10 items
|
| 170 |
+
history.append(item)
|
| 171 |
+
```
|
| 172 |
+
""")
|
| 173 |
+
return
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
@app.cell
|
| 177 |
+
def _():
|
| 178 |
+
from collections import Counter
|
| 179 |
+
|
| 180 |
+
# Example using Counter
|
| 181 |
+
programming_languages = [
|
| 182 |
+
"Python", "JavaScript", "Python", "Java",
|
| 183 |
+
"Python", "JavaScript", "C++", "Java"
|
| 184 |
+
]
|
| 185 |
+
|
| 186 |
+
language_count = Counter(programming_languages)
|
| 187 |
+
print("Language frequency:", dict(language_count))
|
| 188 |
+
print("Most common language:", language_count.most_common(1))
|
| 189 |
+
return Counter, language_count, programming_languages
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
@app.cell(hide_code=True)
|
| 193 |
+
def _(mo):
|
| 194 |
+
callout_text = mo.md("""
|
| 195 |
+
## Level Up Your Collections!
|
| 196 |
+
|
| 197 |
+
Next Steps:
|
| 198 |
+
|
| 199 |
+
- Practice transforming complex data structures
|
| 200 |
+
- Experiment with different collection types
|
| 201 |
+
- Try combining multiple data structures
|
| 202 |
+
|
| 203 |
+
Keep organizing! 📊✨
|
| 204 |
+
""")
|
| 205 |
+
|
| 206 |
+
mo.callout(callout_text, kind="success")
|
| 207 |
+
return (callout_text,)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
if __name__ == "__main__":
|
| 211 |
+
app.run()
|