import gradio as gr import cv2 import numpy as np from PIL import Image import os import warnings # Suppress warnings warnings.filterwarnings('ignore') def create_gui(): # Create the main interface with gr.Blocks(theme=gr.themes.Base( primary_hue=gr.themes.colors.red, font=gr.themes.GoogleFont('Open Sans') )) as interface: gr.Markdown("# FaceFusion") with gr.Tab("Swap"): with gr.Row(): with gr.Column(): source_image = gr.Image(label="Source Face", type="pil") target_image = gr.Image(label="Target Image/Video", type="pil") with gr.Column(): output_image = gr.Image(label="Result") with gr.Row(): process_button = gr.Button("Process", variant="primary") clear_button = gr.Button("Clear") with gr.Tab("Settings"): with gr.Row(): face_detection_threshold = gr.Slider( minimum=0.0, maximum=1.0, value=0.5, step=0.01, label="Face Detection Threshold" ) output_quality = gr.Slider( minimum=1, maximum=100, value=90, step=1, label="Output Quality" ) with gr.Row(): enable_face_enhancement = gr.Checkbox( label="Enable Face Enhancement", value=True ) preserve_original_resolution = gr.Checkbox( label="Preserve Original Resolution", value=True ) # Placeholder function for processing def process_images(source, target): # This is where you'd implement the actual face fusion logic # For now, just return the target image return target def clear_outputs(): return None, None, None # Connect the interface elements process_button.click( fn=process_images, inputs=[source_image, target_image], outputs=[output_image] ) clear_button.click( fn=clear_outputs, inputs=[], outputs=[source_image, target_image, output_image] ) return interface # Create and launch the interface demo = create_gui() # For deployments if __name__ == "__main__": demo.launch()