from functools import lru_cache from typing import List, Tuple import cv2 import numpy from cv2.typing import Size import facefusion.choices from facefusion import inference_manager, state_manager from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url from facefusion.filesystem import resolve_relative_path from facefusion.thread_helper import conditional_thread_semaphore from facefusion.typing import DownloadScope, DownloadSet, FaceLandmark68, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame @lru_cache(maxsize = None) def create_static_model_set(download_scope : DownloadScope) -> ModelSet: return\ { 'xseg_1': { 'hashes': { 'face_occluder': { 'url': resolve_download_url('models-3.1.0', 'xseg_1.hash'), 'path': resolve_relative_path('../.assets/models/xseg_1.hash') } }, 'sources': { 'face_occluder': { 'url': resolve_download_url('models-3.1.0', 'xseg_1.onnx'), 'path': resolve_relative_path('../.assets/models/xseg_1.onnx') } }, 'size': (256, 256) }, 'xseg_2': { 'hashes': { 'face_occluder': { 'url': resolve_download_url('models-3.1.0', 'xseg_2.hash'), 'path': resolve_relative_path('../.assets/models/xseg_2.hash') } }, 'sources': { 'face_occluder': { 'url': resolve_download_url('models-3.1.0', 'xseg_2.onnx'), 'path': resolve_relative_path('../.assets/models/xseg_2.onnx') } }, 'size': (256, 256) }, 'bisenet_resnet_18': { 'hashes': { 'face_parser': { 'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.hash'), 'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.hash') } }, 'sources': { 'face_parser': { 'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.onnx'), 'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.onnx') } }, 'size': (512, 512) }, 'bisenet_resnet_34': { 'hashes': { 'face_parser': { 'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.hash'), 'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.hash') } }, 'sources': { 'face_parser': { 'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.onnx'), 'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.onnx') } }, 'size': (512, 512) } } def get_inference_pool() -> InferencePool: _, model_sources = collect_model_downloads() return inference_manager.get_inference_pool(__name__, model_sources) def clear_inference_pool() -> None: inference_manager.clear_inference_pool(__name__) def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]: model_hashes = {} model_sources = {} model_set = create_static_model_set('full') if state_manager.get_item('face_occluder_model') == 'xseg_1': model_hashes['xseg_1'] = model_set.get('xseg_1').get('hashes').get('face_occluder') model_sources['xseg_1'] = model_set.get('xseg_1').get('sources').get('face_occluder') if state_manager.get_item('face_occluder_model') == 'xseg_2': model_hashes['xseg_2'] = model_set.get('xseg_2').get('hashes').get('face_occluder') model_sources['xseg_2'] = model_set.get('xseg_2').get('sources').get('face_occluder') if state_manager.get_item('face_parser_model') == 'bisenet_resnet_18': model_hashes['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('hashes').get('face_parser') model_sources['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('sources').get('face_parser') if state_manager.get_item('face_parser_model') == 'bisenet_resnet_34': model_hashes['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('hashes').get('face_parser') model_sources['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('sources').get('face_parser') return model_hashes, model_sources def pre_check() -> bool: model_hashes, model_sources = collect_model_downloads() return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources) @lru_cache(maxsize = None) def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask: blur_amount = int(crop_size[0] * 0.5 * face_mask_blur) blur_area = max(blur_amount // 2, 1) box_mask : Mask = numpy.ones(crop_size).astype(numpy.float32) box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0 box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0 box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0 box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0 if blur_amount > 0: box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25) return box_mask def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask: face_occluder_model = state_manager.get_item('face_occluder_model') model_size = create_static_model_set('full').get(face_occluder_model).get('size') prepare_vision_frame = cv2.resize(crop_vision_frame, model_size) prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255 prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3) occlusion_mask = forward_occlude_face(prepare_vision_frame) occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32) occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1]) occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2 return occlusion_mask def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask: face_parser_model = state_manager.get_item('face_parser_model') model_size = create_static_model_set('full').get(face_parser_model).get('size') prepare_vision_frame = cv2.resize(crop_vision_frame, model_size) prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255 prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32)) prepare_vision_frame = numpy.divide(prepare_vision_frame, numpy.array([ 0.229, 0.224, 0.225 ]).astype(numpy.float32)) prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0) prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2) region_mask = forward_parse_face(prepare_vision_frame) region_mask = numpy.isin(region_mask.argmax(0), [ facefusion.choices.face_mask_region_set.get(face_mask_region) for face_mask_region in face_mask_regions ]) region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1]) region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2 return region_mask def create_mouth_mask(face_landmark_68 : FaceLandmark68) -> Mask: convex_hull = cv2.convexHull(face_landmark_68[numpy.r_[3:14, 31:36]].astype(numpy.int32)) mouth_mask : Mask = numpy.zeros((512, 512)).astype(numpy.float32) mouth_mask = cv2.fillConvexPoly(mouth_mask, convex_hull, 1.0) #type:ignore[call-overload] mouth_mask = cv2.erode(mouth_mask.clip(0, 1), numpy.ones((21, 3))) mouth_mask = cv2.GaussianBlur(mouth_mask, (0, 0), sigmaX = 1, sigmaY = 15) return mouth_mask def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask: face_occluder_model = state_manager.get_item('face_occluder_model') face_occluder = get_inference_pool().get(face_occluder_model) with conditional_thread_semaphore(): occlusion_mask : Mask = face_occluder.run(None, { 'input': prepare_vision_frame })[0][0] return occlusion_mask def forward_parse_face(prepare_vision_frame : VisionFrame) -> Mask: face_parser_model = state_manager.get_item('face_parser_model') face_parser = get_inference_pool().get(face_parser_model) with conditional_thread_semaphore(): region_mask : Mask = face_parser.run(None, { 'input': prepare_vision_frame })[0][0] return region_mask