from speechbrain.inference.separation import SepformerSeparation as separator | |
import torchaudio | |
import gradio as gr | |
model = separator.from_hparams(source="speechbrain/sepformer-whamr-enhancement", savedir='pretrained_models/sepformer-whamr-enhancement') | |
def speechbrain(aud): | |
est_sources = model.separate_file(path=aud) | |
torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000) | |
return "source1hat.wav" | |
title = "Speech Seperation" | |
description = "Gradio demo for Speech Seperation by SpeechBrain. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2010.13154' target='_blank'>Attention is All You Need in Speech Separation</a> | <a href='https://github.com/speechbrain/speechbrain/tree/develop/recipes/WSJ0Mix/separation' '_blank'>Github Repo</a></p>" | |
examples = [ | |
['samples_audio_samples_test_mixture.wav'] | |
] | |
demo = gr.Interface( | |
fn=speechbrain, | |
inputs=gr.Audio(type="filepath"), | |
outputs=[ | |
gr.Audio(label="Output Audio", type="filepath") | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples | |
) | |
demo.launch() | |