from speechbrain.inference.separation import SepformerSeparation as separator import torchaudio import gradio as gr model = separator.from_hparams(source="speechbrain/sepformer-whamr-enhancement", savedir='pretrained_models/sepformer-whamr-enhancement') def speechbrain(aud): est_sources = model.separate_file(path=aud) torchaudio.save("clean_audio_file.wav", est_sources[:, :, 0].detach().cpu(), 8000) return "clean_audio_file.wav" title = "Speech Enhancement" description = "Gradio demo for Speech Enhancement by SpeechBrain. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below." article = "

Attention is All You Need in Speech Separation | Github Repo

" examples = [ ['samples_audio_samples_test_mixture.wav'] ] demo = gr.Interface( fn=speechbrain, inputs=gr.Audio(type="filepath"), outputs=[ gr.Audio(label="Output Audio", type="filepath") ], title=title, description=description, article=article, examples=examples ) demo.launch()