File size: 7,407 Bytes
eb2cf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/env python3
"""
Gradio Interface for Voice Sentiment Analysis
Wav2Vec 2.0 + BERT Pipeline
"""

import gradio as gr
import pandas as pd
import os
from utils import custom_css
from voice_sentiment import VoiceSentimentAnalyzer

# Initialize model (once)
print("Loading models...")
analyzer = VoiceSentimentAnalyzer()
print("Models ready!")

def analyze_audio_file(audio_file):
    """Analyze an uploaded audio file"""
    if audio_file is None:
        return "No audio file provided", "", "", ""
    
    try:
        # Analyze the call
        result = analyzer.analyze_call(audio_file)
        
        # Format results
        transcription = result['transcription']
        sentiment = result['sentiment']
        score = f"{result['score']:.2f}"
        satisfaction = result['satisfaction']
        
        # Emoji based on sentiment
        emoji_map = {
            "POSITIVE": "😊",
            "NEGATIVE": "😠", 
            "NEUTRAL": "😐"
        }
        emoji = emoji_map.get(sentiment, "❓")
        
        status = f"Analysis completed {emoji}"
        
        return status, transcription, sentiment, score, satisfaction
        
    except Exception as e:
        error_msg = f"Analysis error: {str(e)}"
        return error_msg, "", "", "", ""

def analyze_batch_files(files):
    """Analyze multiple audio files"""
    if not files:
        return "No files provided", None
    
    try:
        results = []
        
        for file in files:
            result = analyzer.analyze_call(file.name)
            results.append({
                "File": os.path.basename(file.name),
                "Transcription": result['transcription'][:100] + "..." if len(result['transcription']) > 100 else result['transcription'],
                "Sentiment": result['sentiment'],
                "Score": round(result['score'], 2),
                "Satisfaction": result['satisfaction']
            })
        
        # Create DataFrame for display
        df = pd.DataFrame(results)
        csv_filename = "analysis_results.csv"

        print(f"Saving {len(df)} rows to CSV...")
        df.to_csv(csv_filename, index=False)
        print(f"CSV saved successfully")  # 

        # Verify CSV was created and has content
        if os.path.exists(csv_filename):  # ← NEW DEBUG BLOCK
            file_size = os.path.getsize(csv_filename)
            print(f"CSV file exists, size: {file_size} bytes")
        else:
            print("CSV file was not created!")

        
        # Statistics
        total = len(results)
        positive = len([r for r in results if r['Sentiment'] == 'POSITIVE'])
        negative = len([r for r in results if r['Sentiment'] == 'NEGATIVE'])
        neutral = len([r for r in results if r['Sentiment'] == 'NEUTRAL'])
        
        stats = f"""πŸ“Š Statistics:
β€’ Total: {total} calls
β€’ Positive: {positive} ({positive/total*100:.1f}%)
β€’ Negative: {negative} ({negative/total*100:.1f}%)
β€’ Neutral: {neutral} ({neutral/total*100:.1f}%)"""
        
        return stats, df
        
    except Exception as e:
        error_msg = f"Analysis error: {str(e)}"
        return error_msg, None

# Gradio Interface
with gr.Blocks(title="Voice Sentiment Analysis", theme=gr.themes.Soft(), css=custom_css) as app:
    
    gr.Markdown("""
    # Voice Sentiment Analysis System
    ### Wav2Vec 2.0 + BERT Pipeline
    
    Automatically analyze customer call sentiment and classify satisfaction.
    """)
    
    with gr.Tabs():
        
        # Tab 1: Single file analysis
        with gr.Tab("Single File"):
            gr.Markdown("### Analyze one voice call")
            
            with gr.Row():
                with gr.Column():
                    audio_input = gr.Audio(
                        type="filepath",
                        label="Upload your audio file"
                    )
                    
                    analyze_btn = gr.Button(
                        "Analyze", 
                        variant="primary",
                        size="lg"
                    )
                
                with gr.Column():
                    status_output = gr.Textbox(
                        label="πŸ“Š Status",
                        interactive=False
                    )
                    
                    transcription_output = gr.Textbox(
                        label="πŸ“ Transcription",
                        lines=3,
                        interactive=False
                    )
                    
                    with gr.Row():
                        sentiment_output = gr.Textbox(
                            label="🎭 Sentiment",
                            interactive=False
                        )
                        score_output = gr.Textbox(
                            label="🎯 Confidence Score",
                            interactive=False
                        )
                    
                    satisfaction_output = gr.Textbox(
                        label="😊 Customer Satisfaction",
                        interactive=False
                    )
        
        # Tab 2: Multiple files analysis
        with gr.Tab("Multiple Files"):
            gr.Markdown("### Analyze multiple calls in batch")
            
            files_input = gr.File(
                file_count="multiple",
                file_types=[".wav", ".mp3", ".m4a"],
                label="Upload your audio files"
            )
            
            batch_analyze_btn = gr.Button(
                "Analyze All", 
                variant="primary",
                size="lg"
            )
            
            batch_status = gr.Textbox(
                label="Statistics",
                lines=6,
                interactive=False
            )
            
            results_table = gr.Dataframe(
                label="Detailed Results",
                interactive=False
            )
    
    # Tab 3: Information
    with gr.Tab("Information"):
        gr.Markdown("""
        ### How it works?
        
        **3-step pipeline:**
        1. **Audio β†’ Text**: Transcription with Wav2Vec 2.0
        2. **Text β†’ Sentiment**: Analysis with multilingual BERT  
        3. **Classification**: Customer satisfaction (Satisfied/Dissatisfied/Neutral)
        
        ### Supported formats
        - WAV (recommended)
        - MP3
        - M4A
        
        ### Classifications
        - **😊 Satisfied**: Positive sentiment with high confidence
        - **😠 Dissatisfied**: Negative sentiment with high confidence
        - **😐 Neutral**: Neutral sentiment or low confidence
        
        ### Tips
        - Clear audio quality recommended
        - Optimal duration: 10 seconds to 2 minutes
        - Avoid excessive background noise
        """)
    
    # Event connections
    analyze_btn.click(
        fn=analyze_audio_file,
        inputs=[audio_input],
        outputs=[status_output, transcription_output, sentiment_output, score_output, satisfaction_output]
    )
    
    batch_analyze_btn.click(
        fn=analyze_batch_files,
        inputs=[files_input],
        outputs=[batch_status, results_table]
    )

# Launch the application
if __name__ == "__main__":
    app.launch(
        share=True,  # Creates a public link
        server_name="0.0.0.0",  # Accessible from other machines
        server_port=7860
    )