|
import gradio as gr |
|
import pandas as pd |
|
from smolagents import CodeAgent, OpenAIServerModel, tool |
|
import os, subprocess |
|
from bs4 import BeautifulSoup |
|
from duckduckgo_search import DDGS |
|
import csv |
|
import json |
|
import requests |
|
import whisper |
|
from typing import Optional |
|
import openpyxl |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
def download_file(file_name: str) -> None: |
|
if not os.path.exists(file_name): |
|
url = f"{DEFAULT_API_URL}/files/{file_name.split('.')[0]}" |
|
r = requests.get(url) |
|
with open(file_name, "wb") as f: |
|
f.write(r.content) |
|
|
|
@tool |
|
def open_file_as_text(file_name: str, filetype: Optional[str] = "txt") -> str: |
|
""" |
|
Opens a file and returns its content as readable text. |
|
|
|
Supports 'txt', 'json', 'csv', 'xlsx', and 'mp3' (transcribes speech to text). |
|
|
|
Args: |
|
file_name (str): The path or name of the file. |
|
filetype (Optional[str]): Type of file ('txt', 'json', 'csv', 'xlsx', 'mp3'). Defaults to 'txt'. |
|
|
|
Returns: |
|
str: The content of the file as text, or transcribed speech if 'mp3'. |
|
""" |
|
download_file(file_name) |
|
try: |
|
if filetype == "txt": |
|
with open(file_name, "r", encoding="utf-8") as f: |
|
return f.read() |
|
|
|
elif filetype == "json": |
|
with open(file_name, "r", encoding="utf-8") as f: |
|
data = json.load(f) |
|
return json.dumps(data, indent=2) |
|
|
|
elif filetype == "csv": |
|
with open(file_name, "r", encoding="utf-8") as f: |
|
reader = csv.reader(f) |
|
rows = list(reader) |
|
return "\n".join([", ".join(row) for row in rows]) |
|
|
|
elif filetype == "xlsx": |
|
wb = openpyxl.load_workbook(file_name, data_only=True) |
|
sheet = wb.active |
|
content = [] |
|
for row in sheet.iter_rows(values_only=True): |
|
content.append(", ".join(str(cell) if cell is not None else "" for cell in row)) |
|
return "\n".join(content) |
|
|
|
elif filetype == "mp3": |
|
w = whisper.load_model("base") |
|
res = w.transcribe(file_name) |
|
return res["text"] |
|
|
|
else: |
|
return f"Unsupported filetype '{filetype}'. Supported types are 'txt', 'json', 'csv', 'xlsx', and 'mp3'." |
|
|
|
except FileNotFoundError: |
|
return f"File '{file_name}' not found." |
|
except Exception as e: |
|
return f"Error opening file '{file_name}': {str(e)}" |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
""" |
|
Searches the web using DuckDuckGo and returns top search snippets. |
|
|
|
Args: |
|
query (str): The search query string. |
|
|
|
Returns: |
|
str: A list of top search results with title, snippet, and URL. |
|
""" |
|
try: |
|
with DDGS() as ddgs: |
|
results = ddgs.text(query, max_results=3) |
|
if not results: |
|
return "No results found." |
|
return "\n\n".join([f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['href']}" for r in results]) |
|
except Exception as e: |
|
return f"Error during search: {str(e)}" |
|
|
|
def parse_wikipedia_table(table) -> str: |
|
""" |
|
Parses a Wikipedia table into a clean, readable text format. |
|
|
|
Args: |
|
table (Tag): BeautifulSoup Tag for the table. |
|
|
|
Returns: |
|
str: Formatted table as readable text. |
|
""" |
|
rows = [] |
|
headers = [] |
|
|
|
|
|
thead = table.find('thead') |
|
if thead: |
|
for th in thead.find_all('th'): |
|
header_text = th.get_text(separator=" ", strip=True) |
|
headers.append(header_text) |
|
if headers: |
|
rows.append(" | ".join(headers)) |
|
|
|
|
|
tbody = table.find('tbody') |
|
if not tbody: |
|
tbody = table |
|
|
|
for tr in tbody.find_all('tr'): |
|
cells = tr.find_all(['th', 'td']) |
|
cell_texts = [] |
|
for cell in cells: |
|
|
|
for sup in cell.find_all('sup', class_='reference'): |
|
sup.decompose() |
|
|
|
text = cell.get_text(separator=" ", strip=True) |
|
cell_texts.append(text) |
|
|
|
if cell_texts: |
|
row_text = " | ".join(cell_texts) |
|
rows.append(row_text) |
|
|
|
return "\n".join(rows) |
|
|
|
@tool |
|
def read_wikipedia_page(url: str) -> str: |
|
""" |
|
Fetches a Wikipedia article and extracts clean sectioned text around the relevant query. |
|
|
|
Args: |
|
url (str): The Wikipedia page URL. |
|
|
|
Returns: |
|
str: Sectioned and readable snippet focused around the query. |
|
""" |
|
headers = { |
|
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36" |
|
} |
|
resp = requests.get(url, headers=headers, timeout=10) |
|
resp.raise_for_status() |
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
|
|
content_div = soup.find('div', id='mw-content-text') |
|
if not content_div: |
|
return "Content not found." |
|
|
|
parts = [] |
|
for elem in content_div.find_all(['h2', 'h3', 'p', 'ul', 'ol', 'table']): |
|
if elem.name in ['h2', 'h3']: |
|
parts.append("\n\n" + elem.get_text(strip=True) + "\n") |
|
elif elem.name in ['p', 'ul', 'ol']: |
|
parts.append(elem.get_text(strip=True)) |
|
elif elem.name == 'table': |
|
parts.append(parse_wikipedia_table(elem)) |
|
|
|
full_text = "\n".join(parts) |
|
|
|
return full_text |
|
|
|
@tool |
|
def smart_paginate_around_query(full_text: str, query: str) -> list: |
|
""" |
|
Splits text into windows around each occurrence of the query. |
|
|
|
Args: |
|
full_text (str): The full text to search within. |
|
query (str): The search query. |
|
|
|
Returns: |
|
list: List of relevant text windows (pages). |
|
""" |
|
before_chars = 1000 |
|
after_chars = 3000 |
|
full_text_lower = full_text.lower() |
|
query_lower = query.lower() |
|
query_len = len(query_lower) |
|
|
|
pages = [] |
|
search_pos = 0 |
|
text_len = len(full_text) |
|
|
|
while True: |
|
match_pos = full_text_lower.find(query_lower, search_pos) |
|
|
|
if match_pos == -1: |
|
break |
|
|
|
|
|
start = max(0, match_pos - before_chars) |
|
end = min(text_len, match_pos + query_len + after_chars) |
|
|
|
page = full_text[start:end] |
|
pages.append(page) |
|
|
|
|
|
search_pos = end |
|
|
|
return pages |
|
|
|
@tool |
|
def reverse_sentence(text: str) -> str: |
|
""" |
|
Reverses the input text. |
|
|
|
Args: |
|
text (str): The input string to be reversed. |
|
|
|
Returns: |
|
str: The reversed string. |
|
""" |
|
return text[::-1] |
|
|
|
@tool |
|
def run_python_code(file_name: str) -> str: |
|
""" |
|
Executes a Python file and returns its printed final output. |
|
|
|
Args: |
|
file_name (str): Name of the Python file. |
|
|
|
Returns: |
|
str: The final printed output. |
|
""" |
|
download_file(file_name) |
|
|
|
try: |
|
|
|
result = subprocess.run( |
|
["python", file_name], |
|
capture_output=True, |
|
text=True, |
|
timeout=10 |
|
) |
|
|
|
if result.returncode != 0: |
|
return f"Error running code: {result.stderr.strip()}" |
|
|
|
output = result.stdout.strip() |
|
return output |
|
|
|
except subprocess.TimeoutExpired: |
|
return "Execution timed out." |
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
tools = [ |
|
open_file_as_text, |
|
web_search, |
|
read_wikipedia_page, |
|
smart_paginate_around_query, |
|
reverse_sentence, |
|
] |
|
|
|
model = OpenAIServerModel( |
|
model_id="gpt-4o", |
|
api_key=os.getenv("OPENAI_API_KEY"), |
|
temperature=0 |
|
) |
|
|
|
agent = CodeAgent( |
|
model=model, |
|
tools=tools, |
|
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"] |
|
) |
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = CodeAgent( |
|
model=model, |
|
tools=tools, |
|
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", |
|
"urllib"] |
|
) |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
file_name = item.get("file_name") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
full_prompt = f"""You are a highly precise answering agent. |
|
|
|
When given a question: |
|
- If necessary, perform a web search using the tool `web_search` to find possible sources of information. |
|
- If the web search only returns titles and short snippets, you MUST visit the actual webpage to read the full content before answering. |
|
- Use the `read_wikipedia_page` tool to fetch and read the Wikipedia page when necessary. |
|
- You just have the ability to read Wikipedia pages only. |
|
- You MUST paginate the content using `smart_paginate_around_query`. |
|
- When using `smart_paginate_around_query`, you must select a short, general query based on the main keywords only. Avoid using full questions or long phrases. Use 1–3 essential words. |
|
- If the task requires reversing the order of words, letters, phrases, or any text, you must use the `reverse_sentence` tool to perform the operation. |
|
- Never reverse text manually inside your code. Always call the tool instead. |
|
- If the task requires reading, listening, or analyzing a file, you must use the file specified in the `file_name` field of the task metadata, not the file name mentioned casually inside the question text. |
|
- Comma separated lists MUST contain a single space after each comma. |
|
- If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. |
|
- If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. |
|
- If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. |
|
- Only answer after you have gathered enough information by reading the actual page contents. |
|
- Once you have the final answer, you must call `final_answer("your_answer")` immediately after printing it. |
|
- Do not retry or execute anything else after calling `final_answer`. |
|
- `final_answer` must wrap the exact printed value. |
|
|
|
Provide ONLY the precise answer requested. |
|
Do not include explanations, steps, reasoning, or additional text. |
|
Be direct and specific. GAIA benchmark requires exact matching answers. |
|
Example: if asked "What is the capital of France?", respond exactly: |
|
|
|
Thoughts: I need to retrieve the capital of France from Wikipedia and output it directly. |
|
|
|
Code: |
|
```py |
|
print("Paris") |
|
```<end_code> |
|
|
|
Based on the above guidelines, answer the following question: |
|
|
|
--begin of question-- |
|
{question_text} |
|
--end of question-- |
|
|
|
If the questions mentions the need to use a file, use the following `file_name` value as the `file_name` parameter in any function calls: |
|
|
|
file_name: {file_name}""" |
|
submitted_answer = agent.run(full_prompt) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |