Spaces:
Sleeping
Sleeping
File size: 6,962 Bytes
4d6e8c2 fe4a4cb 3b09640 5826bb4 807c127 8660f69 4690b00 fe4a4cb 4d6e8c2 fe4a4cb 4d6e8c2 3b09640 4d6e8c2 c07438f 1c33274 70f5f26 fe4a4cb 5826bb4 b215aca 5826bb4 4690b00 5826bb4 4690b00 5826bb4 4690b00 5826bb4 4690b00 5826bb4 3b09640 1c33274 70f5f26 4d6e8c2 fe4a4cb 70f5f26 fe4a4cb 70f5f26 4d6e8c2 fe4a4cb 4d6e8c2 fe4a4cb 3b09640 5438a03 3b09640 fe4a4cb 4690b00 b215aca 4690b00 3262435 4690b00 b215aca 5826bb4 4690b00 e10127c 077e9fd e10127c 5826bb4 b215aca 4690b00 b215aca 5826bb4 b215aca 4690b00 fe4a4cb 4690b00 b215aca 4690b00 b215aca 4690b00 fe4a4cb 5438a03 5826bb4 5438a03 fe4a4cb 4d6e8c2 fe4a4cb 70f5f26 fe4a4cb 4d6e8c2 70f5f26 4d6e8c2 fe4a4cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
import librosa
import pickle
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Not Neural Network"
ROUTE = "/audio"
def extract_mfcc_features(
signal,
sr=16000,
n_mfcc=13,
duration=3.0
):
"""
Extrait des MFCC (base, delta, delta-delta) à partir d'un signal audio 1D.
Retourne un tuple:
(features_vector, mfcc_combined)
où:
- features_vector : vecteur 1D (moyenne+std des MFCC combinés),
- mfcc_combined : matrice 2D de taille (3*n_mfcc, nb_frames).
"""
# 1) Durée cible en échantillons
target_length = int(sr * duration)
# 2) Tronquer ou padder le signal à la durée souhaitée
if len(signal) > target_length:
signal = signal[:target_length]
elif len(signal) < target_length:
signal = np.pad(signal, (0, target_length - len(signal)), mode='constant')
# 3) Extraction des MFCC de base
mfcc = librosa.feature.mfcc(y=signal, sr=sr, n_mfcc=n_mfcc)
# 4) Dérivées première (delta) et seconde (delta-delta)
mfcc_delta = librosa.feature.delta(mfcc, order=1)
mfcc_delta2 = librosa.feature.delta(mfcc, order=2)
# 5) Concaténer en (3*n_mfcc, nb_frames)
mfcc_combined = np.vstack([mfcc, mfcc_delta, mfcc_delta2])
# 6) Calculer moyenne et écart-type sur l'axe temporel
# => vecteur de taille (6 * n_mfcc) si 3*n_mfcc + mean/std
mfcc_mean = np.mean(mfcc_combined, axis=1)
mfcc_std = np.std(mfcc_combined, axis=1)
# 7) Vecteur global
features_vector = np.concatenate([mfcc_mean, mfcc_std])
# Retour des deux
return features_vector, mfcc_combined
def transform_data(df, sr=12000, duration=3.0):
"""
Prend un DataFrame df avec colonnes 'audio' et 'label'.
- Extrait les MFCC + delta + delta-delta pour chaque signal
=> récupère un vecteur global (mean/std) + la matrice 2D complète.
- Montre comment concaténer ces deux morceaux pour un seul vecteur final.
- Entraîne un RandomForest (binaire).
- Affiche l'accuracy sur un jeu de test (25%).
"""
X = []
Y = []
print("Extraction des features MFCC (base + delta + delta-delta)...")
for i, row in df.iterrows():
signal = row["audio"]
y = row["label"]
# Récupère (vecteur global, matrice 2D)
features_vector, mfcc_matrix = extract_mfcc_features(
signal=signal,
sr=sr,
duration=duration
)
# Exemple : On concatène (moyenne+std) + la matrice aplatie
mfcc_matrix_flat = mfcc_matrix.flatten()
big_features = np.concatenate([features_vector, mfcc_matrix_flat])
# On stocke big_features dans X
X.append(big_features)
Y.append(y)
X = np.array(X)
Y = np.array(Y)
return X, y
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-1)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
"""
dict_train = [
{
"label": elmt["label"],
"audio": elmt["audio"]["array"],
"sampling_rate": elmt["audio"]["sampling_rate"]
} for elmt in train_test["train"]
]
"""
# df_train = pd.DataFrame(dict_train)
dict_test = [
{
"label": elmt["label"],
"audio": elmt["audio"]["array"],
"sampling_rate": elmt["audio"]["sampling_rate"]
} for elmt in test_dataset
]
df_test = pd.DataFrame(dict_test)
# Get the model
with open("models/mon_modele.pkl", "rb") as f:
model = pickle.load(f)
# model = RandomForestClassifier
# X_train, y_train = transform_data(df_test)
X_test, y_test = transform_data(df_test)
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# clf = RandomForestClassifier(n_estimators=100, random_state=42)
# clf.fit(X_train, y_train)
print("Évaluation sur le test set...")
y_pred = model.predict(X_test)
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
# predictions = [random.randint(0, 1) for _ in range(len(true_labels))]
predictions = model.predict(df_test)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |