File size: 6,962 Bytes
4d6e8c2
fe4a4cb
 
 
 
3b09640
5826bb4
807c127
8660f69
 
4690b00
fe4a4cb
4d6e8c2
fe4a4cb
4d6e8c2
3b09640
 
 
4d6e8c2
 
c07438f
1c33274
70f5f26
fe4a4cb
5826bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b215aca
5826bb4
 
 
 
 
 
 
 
 
 
4690b00
5826bb4
 
 
 
4690b00
5826bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
4690b00
 
5826bb4
 
4690b00
 
 
5826bb4
 
3b09640
1c33274
70f5f26
4d6e8c2
 
fe4a4cb
70f5f26
 
fe4a4cb
70f5f26
4d6e8c2
fe4a4cb
4d6e8c2
fe4a4cb
 
 
 
 
 
 
3b09640
5438a03
3b09640
fe4a4cb
 
 
4690b00
b215aca
4690b00
 
 
 
 
3262435
4690b00
b215aca
 
5826bb4
4690b00
e10127c
 
 
 
 
077e9fd
e10127c
 
 
5826bb4
b215aca
 
4690b00
b215aca
5826bb4
b215aca
4690b00
fe4a4cb
 
 
 
 
 
 
 
 
4690b00
b215aca
 
4690b00
 
b215aca
4690b00
fe4a4cb
 
 
5438a03
5826bb4
5438a03
fe4a4cb
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
 
fe4a4cb
70f5f26
fe4a4cb
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
fe4a4cb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
import librosa
import pickle
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier

from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

DESCRIPTION = "Not Neural Network"
ROUTE = "/audio"


def extract_mfcc_features(
    signal, 
    sr=16000, 
    n_mfcc=13, 
    duration=3.0
):
    """
    Extrait des MFCC (base, delta, delta-delta) à partir d'un signal audio 1D.
    
    Retourne un tuple:
        (features_vector, mfcc_combined)
    où:
        - features_vector : vecteur 1D (moyenne+std des MFCC combinés),
        - mfcc_combined : matrice 2D de taille (3*n_mfcc, nb_frames).
    """
    # 1) Durée cible en échantillons
    target_length = int(sr * duration)

    # 2) Tronquer ou padder le signal à la durée souhaitée
    if len(signal) > target_length:
        signal = signal[:target_length]
    elif len(signal) < target_length:
        signal = np.pad(signal, (0, target_length - len(signal)), mode='constant')
    
    # 3) Extraction des MFCC de base
    mfcc = librosa.feature.mfcc(y=signal, sr=sr, n_mfcc=n_mfcc)
    
    # 4) Dérivées première (delta) et seconde (delta-delta)
    mfcc_delta = librosa.feature.delta(mfcc, order=1)
    mfcc_delta2 = librosa.feature.delta(mfcc, order=2)
    
    # 5) Concaténer en (3*n_mfcc, nb_frames)
    mfcc_combined = np.vstack([mfcc, mfcc_delta, mfcc_delta2])
    
    # 6) Calculer moyenne et écart-type sur l'axe temporel
    #    => vecteur de taille (6 * n_mfcc) si 3*n_mfcc + mean/std
    mfcc_mean = np.mean(mfcc_combined, axis=1)
    mfcc_std = np.std(mfcc_combined, axis=1)
    
    # 7) Vecteur global
    features_vector = np.concatenate([mfcc_mean, mfcc_std])
    
    # Retour des deux
    return features_vector, mfcc_combined


def transform_data(df, sr=12000, duration=3.0):
    """
    Prend un DataFrame df avec colonnes 'audio' et 'label'.
    - Extrait les MFCC + delta + delta-delta pour chaque signal
      => récupère un vecteur global (mean/std) + la matrice 2D complète.
    - Montre comment concaténer ces deux morceaux pour un seul vecteur final.
    - Entraîne un RandomForest (binaire).
    - Affiche l'accuracy sur un jeu de test (25%).
    """

    X = []
    Y = []

    print("Extraction des features MFCC (base + delta + delta-delta)...")
    for i, row in df.iterrows():
        signal = row["audio"]
        y = row["label"]
        
        # Récupère (vecteur global, matrice 2D)
        features_vector, mfcc_matrix = extract_mfcc_features(
            signal=signal, 
            sr=sr, 
            duration=duration
        )
        
        # Exemple : On concatène (moyenne+std) + la matrice aplatie
        mfcc_matrix_flat = mfcc_matrix.flatten()
        big_features = np.concatenate([features_vector, mfcc_matrix_flat])
        
        # On stocke big_features dans X
        X.append(big_features)
        Y.append(y)
        
    
    X = np.array(X)
    Y = np.array(Y)
    
    return X, y



@router.post(ROUTE, tags=["Audio Task"],
             description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
    """
    Evaluate audio classification for rainforest sound detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-1)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "chainsaw": 0,
        "environment": 1
    }
    # Load and prepare the dataset
    # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
    
    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    """
    dict_train = [
        {
            "label": elmt["label"],
            "audio": elmt["audio"]["array"],
            "sampling_rate": elmt["audio"]["sampling_rate"]
        } for elmt in train_test["train"]
    ]
    """
    # df_train = pd.DataFrame(dict_train)

    
    dict_test = [
        {
            "label": elmt["label"],
            "audio": elmt["audio"]["array"],
            "sampling_rate": elmt["audio"]["sampling_rate"]
        } for elmt in test_dataset
    ]
    df_test = pd.DataFrame(dict_test)

    # Get the model
    with open("models/mon_modele.pkl", "rb") as f:
       model = pickle.load(f)

    # model = RandomForestClassifier

    # X_train, y_train = transform_data(df_test)
    X_test, y_test = transform_data(df_test)
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   

    # clf = RandomForestClassifier(n_estimators=100, random_state=42)
    # clf.fit(X_train, y_train)
    
    print("Évaluation sur le test set...")
    y_pred = model.predict(X_test)

    
    # Make random predictions (placeholder for actual model inference)
    true_labels = test_dataset["label"]
    # predictions = [random.randint(0, 1) for _ in range(len(true_labels))]
    predictions = model.predict(df_test)
    
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results