File size: 5,883 Bytes
133afa1 0f5bc63 133afa1 4f65e98 133afa1 0f5bc63 133afa1 0f5bc63 133afa1 0f5bc63 133afa1 0f5bc63 133afa1 0f5bc63 133afa1 0f5bc63 133afa1 0f5bc63 133afa1 0f5bc63 133afa1 0f5bc63 133afa1 0f5bc63 133afa1 4f65e98 133afa1 4f65e98 0f5bc63 4f65e98 0f5bc63 4f65e98 0f5bc63 4f65e98 0f5bc63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
"""
Multilingual Sentiment Analysis (English β’ Urdu β’ Roman Urdu)
-------------------------------------------------------------
Features:
β’ Single text sentiment analysis with language hint.
β’ Batch analysis from CSV/XLSX file.
β’ 3-class output (Positive / Neutral / Negative) aggregated from 5-star scores.
β’ Saves logs to sentiment_logs.xlsx.
"""
import os
from datetime import datetime
import pandas as pd
import gradio as gr
from transformers import pipeline
# -------- Model & Pipeline --------
MODEL_NAME = "nlptown/bert-base-multilingual-uncased-sentiment"
clf = pipeline("sentiment-analysis", model=MODEL_NAME)
# -------- Logging setup --------
LOG_PATH = "sentiment_logs.xlsx"
if not os.path.exists(LOG_PATH):
pd.DataFrame(columns=[
"timestamp", "language_hint", "text",
"predicted_label_3class", "confidence_3class",
"stars_probs", "top_star_label"
]).to_excel(LOG_PATH, index=False)
# -------- Helper function: aggregate 5β
β 3-class --------
def _aggregate_to_3class(star_scores):
scores = {d["label"].lower(): float(d["score"]) for d in star_scores}
s1, s2, s3, s4, s5 = (
scores.get("1 star", 0.0),
scores.get("2 stars", 0.0),
scores.get("3 stars", 0.0),
scores.get("4 stars", 0.0),
scores.get("5 stars", 0.0),
)
neg, neu, pos = s1 + s2, s3, s4 + s5
probs3 = {"Negative": neg, "Neutral": neu, "Positive": pos}
pred_label = max(probs3, key=probs3.get)
confidence = probs3[pred_label]
top_star_label = max(
["1 star", "2 stars", "3 stars", "4 stars", "5 stars"],
key=lambda k: {"1 star": s1, "2 stars": s2, "3 stars": s3, "4 stars": s4, "5 stars": s5}[k]
)
return pred_label, confidence, probs3, top_star_label
# -------- Single text analysis --------
def analyze_single(text, lang_hint):
if not text or not text.strip():
return "β Please enter some text.", "", "", LOG_PATH
star_results = clf(text, return_all_scores=True)[0]
pred_label, conf, probs3, top_star = _aggregate_to_3class(star_results)
polarity = {
"Positive": "π Positive",
"Neutral": "π Neutral",
"Negative": "βΉοΈ Negative",
}[pred_label]
# Log
try:
df = pd.read_excel(LOG_PATH)
except Exception:
df = pd.DataFrame(columns=[
"timestamp", "language_hint", "text",
"predicted_label_3class", "confidence_3class",
"stars_probs", "top_star_label"
])
new_row = {
"timestamp": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S UTC"),
"language_hint": lang_hint,
"text": text,
"predicted_label_3class": pred_label,
"confidence_3class": round(conf, 4),
"stars_probs": str({d["label"]: round(float(d["score"]), 4) for d in star_results}),
"top_star_label": top_star,
}
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
df.to_excel(LOG_PATH, index=False)
return f"Sentiment: {pred_label}", f"Confidence: {conf:.3f}", f"Polarity: {polarity}", LOG_PATH
# -------- Batch analysis --------
def analyze_batch(file, lang_hint):
if file is None:
return "β Please upload a CSV/XLSX file.", None
ext = os.path.splitext(file.name)[-1].lower()
if ext == ".csv":
df = pd.read_csv(file.name)
elif ext in [".xls", ".xlsx"]:
df = pd.read_excel(file.name)
else:
return "β Only CSV or Excel files are supported.", None
if "text" not in df.columns:
return "β The file must contain a 'text' column.", None
results = []
for t in df["text"]:
if not isinstance(t, str) or not t.strip():
results.append(("N/A", 0.0, "Invalid text"))
continue
star_results = clf(t, return_all_scores=True)[0]
pred_label, conf, probs3, top_star = _aggregate_to_3class(star_results)
results.append((pred_label, conf, top_star))
df["predicted_label_3class"], df["confidence_3class"], df["top_star_label"] = zip(*results)
out_path = "batch_results.xlsx"
df.to_excel(out_path, index=False)
return "β
Batch analysis complete.", out_path
# -------- Gradio UI --------
with gr.Blocks() as demo:
gr.Markdown(
"## π Multilingual Sentiment Analysis (Positive β’ Neutral β’ Negative)\n"
"**Languages:** English, Urdu, Roman Urdu \n"
"Model: `nlptown/bert-base-multilingual-uncased-sentiment` (mapped from 5β
β 3 classes)"
)
with gr.Tab("πΉ Single Text"):
user_text = gr.Textbox(label="Enter text", placeholder="Type in English, Urdu, or Roman Urdu...")
lang_dropdown = gr.Dropdown(["English", "Urdu", "Roman Urdu"], label="Language Hint", value="English")
btn = gr.Button("Analyze")
out_sent = gr.Textbox(label="Sentiment")
out_conf = gr.Textbox(label="Confidence (0β1)")
out_pol = gr.Textbox(label="Polarity")
out_file = gr.File(label="Download logs (.xlsx)")
btn.click(analyze_single, inputs=[user_text, lang_dropdown],
outputs=[out_sent, out_conf, out_pol, out_file])
with gr.Tab("πΉ Batch Upload"):
gr.Markdown("Upload a CSV/XLSX file with a **'text'** column for batch sentiment analysis.")
file_in = gr.File(label="Upload CSV/XLSX", file_types=[".csv", ".xlsx"])
lang_dropdown_batch = gr.Dropdown(["English", "Urdu", "Roman Urdu"],
label="Language Hint", value="English")
btn_batch = gr.Button("Analyze Batch")
batch_status = gr.Textbox(label="Status")
batch_file = gr.File(label="Download Batch Results")
btn_batch.click(analyze_batch, inputs=[file_in, lang_dropdown_batch],
outputs=[batch_status, batch_file])
if __name__ == "__main__":
demo.launch()
|