File size: 1,937 Bytes
fada987
 
 
 
 
 
81354f0
fada987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
title: QP-RNN Interactive Demo
emoji: ๐ŸŽฎ
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 5.35.0
app_file: app.py
pinned: false
license: mit
---

# QP-RNN: Quadratic Programming Recurrent Neural Network

This is an interactive demo for the paper ["MPC-Inspired Reinforcement Learning for Verifiable Model-Free Control"](https://arxiv.org/abs/2312.05332) (L4DC 2024).

## What is QP-RNN?

QP-RNN is a novel neural network architecture that combines:
- ๐ŸŽฏ **Structure** of Model Predictive Control (MPC) 
- ๐Ÿง  **Learning** capabilities of Deep Reinforcement Learning
- โœ… **Verifiable** properties (stability, constraint satisfaction)

At each time step, QP-RNN solves a parameterized Quadratic Program:
```
min   0.5 * y'Py + q(x)'y
s.t.  -1 โ‰ค Hy + b(x) โ‰ค 1
```

Where the parameters (P, H, q, b) are learned through RL instead of derived from a model.

## Demo Features

This interactive demo lets you:
- ๐ŸŽฎ Control a double integrator system with QP-RNN
- ๐Ÿ”ง Adjust controller parameters in real-time
- ๐Ÿ“Š Visualize system response and phase portraits
- ๐Ÿ“ˆ See performance metrics and constraint satisfaction

## Key Advantages

1. **Interpretable**: QP structure provides clear understanding
2. **Verifiable**: Enables formal stability and safety analysis  
3. **Efficient**: Fixed-iteration solver suitable for real-time control
4. **Robust**: Handles constraints and disturbances naturally

## Links

- ๐Ÿ“„ [Paper](https://arxiv.org/abs/2312.05332)
- ๐Ÿ’ป [GitHub Repository](https://github.com/yiwenlu66/learning-qp)
- ๐Ÿค– [Full Training Code](https://github.com/yiwenlu66/learning-qp)

## Citation

```bibtex
@InProceedings{lu2024mpc,
  title={MPC-Inspired Reinforcement Learning for Verifiable Model-Free Control},
  author={Lu, Yiwen and Li, Zishuo and Zhou, Yihan and Li, Na and Mo, Yilin},
  booktitle={Proceedings of the 6th Conference on Learning for Dynamics and Control},
  year={2024}
}
```