Spaces:
Sleeping
Sleeping
File size: 1,937 Bytes
fada987 81354f0 fada987 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
title: QP-RNN Interactive Demo
emoji: ๐ฎ
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 5.35.0
app_file: app.py
pinned: false
license: mit
---
# QP-RNN: Quadratic Programming Recurrent Neural Network
This is an interactive demo for the paper ["MPC-Inspired Reinforcement Learning for Verifiable Model-Free Control"](https://arxiv.org/abs/2312.05332) (L4DC 2024).
## What is QP-RNN?
QP-RNN is a novel neural network architecture that combines:
- ๐ฏ **Structure** of Model Predictive Control (MPC)
- ๐ง **Learning** capabilities of Deep Reinforcement Learning
- โ
**Verifiable** properties (stability, constraint satisfaction)
At each time step, QP-RNN solves a parameterized Quadratic Program:
```
min 0.5 * y'Py + q(x)'y
s.t. -1 โค Hy + b(x) โค 1
```
Where the parameters (P, H, q, b) are learned through RL instead of derived from a model.
## Demo Features
This interactive demo lets you:
- ๐ฎ Control a double integrator system with QP-RNN
- ๐ง Adjust controller parameters in real-time
- ๐ Visualize system response and phase portraits
- ๐ See performance metrics and constraint satisfaction
## Key Advantages
1. **Interpretable**: QP structure provides clear understanding
2. **Verifiable**: Enables formal stability and safety analysis
3. **Efficient**: Fixed-iteration solver suitable for real-time control
4. **Robust**: Handles constraints and disturbances naturally
## Links
- ๐ [Paper](https://arxiv.org/abs/2312.05332)
- ๐ป [GitHub Repository](https://github.com/yiwenlu66/learning-qp)
- ๐ค [Full Training Code](https://github.com/yiwenlu66/learning-qp)
## Citation
```bibtex
@InProceedings{lu2024mpc,
title={MPC-Inspired Reinforcement Learning for Verifiable Model-Free Control},
author={Lu, Yiwen and Li, Zishuo and Zhou, Yihan and Li, Na and Mo, Yilin},
booktitle={Proceedings of the 6th Conference on Learning for Dynamics and Control},
year={2024}
}
``` |