Spaces:
Running
Running
burtenshaw
commited on
Commit
Β·
49da546
1
Parent(s):
14270af
change functionality to add tags to model repos
Browse files- README.md +7 -241
- app.py +216 -57
- mcp_server.py +109 -45
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: π
|
4 |
colorFrom: purple
|
5 |
colorTo: yellow
|
@@ -10,246 +10,12 @@ pinned: false
|
|
10 |
base_path: /gradio
|
11 |
---
|
12 |
|
13 |
-
#
|
14 |
|
15 |
-
|
16 |
|
17 |
-
##
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
- **Automatic Posting**: Posts AI responses back to the original discussion thread
|
23 |
-
- **Testing Tools**: Built-in webhook simulation and AI testing capabilities
|
24 |
-
- **MCP Server**: Includes a Model Context Protocol server for advanced tool integration
|
25 |
-
|
26 |
-
## π Quick Start
|
27 |
-
|
28 |
-
### 1. Installation
|
29 |
-
|
30 |
-
```bash
|
31 |
-
# Clone the repository
|
32 |
-
git clone <your-repo-url>
|
33 |
-
cd mcp-course-unit3-example
|
34 |
-
|
35 |
-
# Install dependencies
|
36 |
-
pip install -e .
|
37 |
-
```
|
38 |
-
|
39 |
-
### 2. Environment Setup
|
40 |
-
|
41 |
-
Copy the example environment file and configure your API keys:
|
42 |
-
|
43 |
-
```bash
|
44 |
-
cp env.example .env
|
45 |
-
```
|
46 |
-
|
47 |
-
Edit `.env` with your credentials:
|
48 |
-
|
49 |
-
```env
|
50 |
-
# Webhook Configuration
|
51 |
-
WEBHOOK_SECRET=your-secure-webhook-secret
|
52 |
-
|
53 |
-
# Hugging Face Configuration
|
54 |
-
HF_TOKEN=hf_your_hugging_face_token_here
|
55 |
-
|
56 |
-
# Model Configuration (optional)
|
57 |
-
HF_MODEL=microsoft/DialoGPT-medium
|
58 |
-
HF_PROVIDER=huggingface
|
59 |
-
```
|
60 |
-
|
61 |
-
### 3. Run the Application
|
62 |
-
|
63 |
-
```bash
|
64 |
-
python server.py
|
65 |
-
```
|
66 |
-
|
67 |
-
The application will start on `http://localhost:8000` with:
|
68 |
-
- π **Gradio Dashboard**: `http://localhost:8000/gradio`
|
69 |
-
- π **Webhook Endpoint**: `http://localhost:8000/webhook`
|
70 |
-
- π **API Documentation**: `http://localhost:8000/docs`
|
71 |
-
|
72 |
-
## π§ Configuration
|
73 |
-
|
74 |
-
### Hugging Face Hub Webhook Setup
|
75 |
-
|
76 |
-
1. Go to your Hugging Face repository settings
|
77 |
-
2. Navigate to the "Webhooks" section
|
78 |
-
3. Create a new webhook with:
|
79 |
-
- **URL**: `https://your-domain.com/webhook`
|
80 |
-
- **Secret**: Same as `WEBHOOK_SECRET` in your `.env`
|
81 |
-
- **Events**: Subscribe to "Community (PR & discussions)"
|
82 |
-
|
83 |
-
### Required API Keys
|
84 |
-
|
85 |
-
#### Hugging Face Token
|
86 |
-
1. Go to [Hugging Face Settings](https://huggingface.co/settings/tokens)
|
87 |
-
2. Create a new token with "Write" permissions
|
88 |
-
3. Add it to your `.env` as `HF_TOKEN`
|
89 |
-
|
90 |
-
## π Dashboard Features
|
91 |
-
|
92 |
-
### Recent Comments Tab
|
93 |
-
- View all processed discussion comments
|
94 |
-
- See AI responses in real-time
|
95 |
-
- Refresh and filter capabilities
|
96 |
-
|
97 |
-
### Test HF Inference Tab
|
98 |
-
- Direct testing of the Hugging Face Inference API
|
99 |
-
- Custom prompt input
|
100 |
-
- Response preview
|
101 |
-
|
102 |
-
### Simulate Webhook Tab
|
103 |
-
- Test webhook processing without real HF events
|
104 |
-
- Mock discussion scenarios
|
105 |
-
- Validate AI response generation
|
106 |
-
|
107 |
-
### Configuration Tab
|
108 |
-
- View current setup status
|
109 |
-
- Check API key configuration
|
110 |
-
- Monitor processing statistics
|
111 |
-
|
112 |
-
## π API Endpoints
|
113 |
-
|
114 |
-
### POST `/webhook`
|
115 |
-
Receives webhooks from Hugging Face Hub.
|
116 |
-
|
117 |
-
**Headers:**
|
118 |
-
- `X-Webhook-Secret`: Your webhook secret
|
119 |
-
|
120 |
-
**Body:** HF Hub webhook payload
|
121 |
-
|
122 |
-
### GET `/comments`
|
123 |
-
Returns all processed comments and responses.
|
124 |
-
|
125 |
-
### GET `/`
|
126 |
-
Basic API information and available endpoints.
|
127 |
-
|
128 |
-
## π€ MCP Server
|
129 |
-
|
130 |
-
The application includes a Model Context Protocol (MCP) server that provides tools for:
|
131 |
-
|
132 |
-
- **get_discussions**: Retrieve discussions from HF repositories
|
133 |
-
- **get_discussion_details**: Get detailed information about specific discussions
|
134 |
-
- **comment_on_discussion**: Add comments to discussions
|
135 |
-
- **generate_ai_response**: Generate AI responses using HF Inference
|
136 |
-
- **respond_to_discussion**: Generate and post AI responses automatically
|
137 |
-
|
138 |
-
### Running the MCP Server
|
139 |
-
|
140 |
-
```bash
|
141 |
-
python mcp_server.py
|
142 |
-
```
|
143 |
-
|
144 |
-
The MCP server uses stdio transport and can be integrated with MCP clients following the [Tiny Agents pattern](https://huggingface.co/blog/python-tiny-agents).
|
145 |
-
|
146 |
-
## π§ͺ Testing
|
147 |
-
|
148 |
-
### Local Testing
|
149 |
-
Use the "Simulate Webhook" tab in the Gradio dashboard to test without real webhooks.
|
150 |
-
|
151 |
-
### Webhook Testing
|
152 |
-
You can test the webhook endpoint directly:
|
153 |
-
|
154 |
-
```bash
|
155 |
-
curl -X POST http://localhost:8000/webhook \
|
156 |
-
-H "Content-Type: application/json" \
|
157 |
-
-H "X-Webhook-Secret: your-webhook-secret" \
|
158 |
-
-d '{
|
159 |
-
"event": {"action": "create", "scope": "discussion.comment"},
|
160 |
-
"comment": {
|
161 |
-
"content": "@discussion-bot How do I use this model?",
|
162 |
-
"author": "test-user",
|
163 |
-
"created_at": "2024-01-01T00:00:00Z"
|
164 |
-
},
|
165 |
-
"discussion": {
|
166 |
-
"title": "Test Discussion",
|
167 |
-
"num": 1,
|
168 |
-
"url": {"api": "https://huggingface.co/api/repos/test/repo/discussions"}
|
169 |
-
},
|
170 |
-
"repo": {"name": "test/repo"}
|
171 |
-
}'
|
172 |
-
```
|
173 |
-
|
174 |
-
## ποΈ Architecture
|
175 |
-
|
176 |
-
```
|
177 |
-
βββββββββββββββββββ βββββββββββββββββοΏ½οΏ½β βββββββββββββββββββ
|
178 |
-
β HF Hub βββββΆβ FastAPI βββββΆβ HF Inference β
|
179 |
-
β Webhook β β Server β β API β
|
180 |
-
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
|
181 |
-
β
|
182 |
-
βΌ
|
183 |
-
βββββββββββββββββββ
|
184 |
-
β Gradio β
|
185 |
-
β Dashboard β
|
186 |
-
βββββββββββββββββββ
|
187 |
-
β
|
188 |
-
βΌ
|
189 |
-
βββββββββββββββββββ
|
190 |
-
β MCP Server β
|
191 |
-
β (Tools) β
|
192 |
-
βββββββββββββββββββ
|
193 |
-
```
|
194 |
-
|
195 |
-
## π Security
|
196 |
-
|
197 |
-
- Webhook secret verification prevents unauthorized requests
|
198 |
-
- Environment variables keep sensitive data secure
|
199 |
-
- CORS middleware configured for safe cross-origin requests
|
200 |
-
|
201 |
-
## π Deployment
|
202 |
-
|
203 |
-
### Using Docker (Recommended)
|
204 |
-
|
205 |
-
```dockerfile
|
206 |
-
FROM python:3.11-slim
|
207 |
-
|
208 |
-
WORKDIR /app
|
209 |
-
COPY . .
|
210 |
-
RUN pip install -e .
|
211 |
-
|
212 |
-
EXPOSE 8000
|
213 |
-
CMD ["python", "server.py"]
|
214 |
-
```
|
215 |
-
|
216 |
-
### Using Cloud Platforms
|
217 |
-
|
218 |
-
The application can be deployed on:
|
219 |
-
- **Hugging Face Spaces** (recommended for HF integration)
|
220 |
-
- **Railway**
|
221 |
-
- **Render**
|
222 |
-
- **Heroku**
|
223 |
-
- **AWS/GCP/Azure**
|
224 |
-
|
225 |
-
## π€ Contributing
|
226 |
-
|
227 |
-
1. Fork the repository
|
228 |
-
2. Create a feature branch
|
229 |
-
3. Make your changes
|
230 |
-
4. Add tests if applicable
|
231 |
-
5. Submit a pull request
|
232 |
-
|
233 |
-
## π License
|
234 |
-
|
235 |
-
This project is licensed under the MIT License.
|
236 |
-
|
237 |
-
## π Support
|
238 |
-
|
239 |
-
If you encounter issues:
|
240 |
-
|
241 |
-
1. Check the Configuration tab in the dashboard
|
242 |
-
2. Verify your API keys are correct
|
243 |
-
3. Ensure webhook URL is accessible
|
244 |
-
4. Check the application logs
|
245 |
-
|
246 |
-
For additional help, please open an issue in the repository.
|
247 |
-
|
248 |
-
## π Related Links
|
249 |
-
|
250 |
-
- [Hugging Face Webhooks Guide](https://huggingface.co/docs/hub/en/webhooks-guide-discussion-bot)
|
251 |
-
- [Hugging Face Hub Python Library](https://huggingface.co/docs/huggingface_hub/en/guides/community)
|
252 |
-
- [Tiny Agents in Python Blog Post](https://huggingface.co/blog/python-tiny-agents)
|
253 |
-
- [FastAPI Documentation](https://fastapi.tiangolo.com/)
|
254 |
-
- [Gradio Documentation](https://gradio.app/)
|
255 |
-
- [Model Context Protocol (MCP)](https://modelcontextprotocol.io/)
|
|
|
1 |
---
|
2 |
+
title: tag-a-repo bot
|
3 |
emoji: π
|
4 |
colorFrom: purple
|
5 |
colorTo: yellow
|
|
|
10 |
base_path: /gradio
|
11 |
---
|
12 |
|
13 |
+
# HF Tagging Bot
|
14 |
|
15 |
+
This is a bot that tags HuggingFace models when they are mentioned in discussions.
|
16 |
|
17 |
+
## How it works
|
18 |
|
19 |
+
1. The bot listens to discussions on the HuggingFace Hub
|
20 |
+
2. When a discussion is created, the bot checks for tag mentions in the comment
|
21 |
+
3. If a tag is mentioned, the bot adds the tag to the model repository via a PR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import os
|
|
|
|
|
2 |
from datetime import datetime
|
3 |
-
from typing import List, Dict, Any, Optional
|
4 |
|
5 |
from fastapi import FastAPI, Request, BackgroundTasks
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
@@ -16,14 +18,56 @@ load_dotenv()
|
|
16 |
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "your-webhook-secret")
|
17 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
18 |
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium")
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
# Simple storage for processed
|
22 |
-
|
23 |
|
24 |
# Agent instance
|
25 |
agent_instance: Optional[Agent] = None
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
class WebhookEvent(BaseModel):
|
29 |
event: Dict[str, str]
|
@@ -32,7 +76,7 @@ class WebhookEvent(BaseModel):
|
|
32 |
repo: Dict[str, str]
|
33 |
|
34 |
|
35 |
-
app = FastAPI(title="HF
|
36 |
app.add_middleware(CORSMiddleware, allow_origins=["*"])
|
37 |
|
38 |
|
@@ -42,12 +86,17 @@ async def get_agent():
|
|
42 |
if agent_instance is None and HF_TOKEN:
|
43 |
agent_instance = Agent(
|
44 |
model=HF_MODEL,
|
45 |
-
provider=
|
46 |
api_key=HF_TOKEN,
|
47 |
servers=[
|
48 |
{
|
49 |
"type": "stdio",
|
50 |
-
"config": {
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
],
|
53 |
)
|
@@ -55,45 +104,129 @@ async def get_agent():
|
|
55 |
return agent_instance
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
async def process_webhook_comment(webhook_data: Dict[str, Any]):
|
59 |
-
"""Process webhook
|
60 |
comment_content = webhook_data["comment"]["content"]
|
61 |
discussion_title = webhook_data["discussion"]["title"]
|
62 |
repo_name = webhook_data["repo"]["name"]
|
63 |
discussion_num = webhook_data["discussion"]["num"]
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
Please respond to this HuggingFace discussion comment using the available tools.
|
72 |
-
|
73 |
-
Repository: {repo_name}
|
74 |
-
Discussion: {discussion_title} (#{discussion_num})
|
75 |
-
Comment: {comment_content}
|
76 |
-
|
77 |
-
First use generate_discussion_response to create a helpful response, then use post_discussion_comment to post it.
|
78 |
-
"""
|
79 |
-
|
80 |
-
try:
|
81 |
-
response_parts = []
|
82 |
-
async for item in agent.run(prompt):
|
83 |
-
# Collect the agent's response
|
84 |
-
if hasattr(item, "content") and item.content:
|
85 |
-
response_parts.append(item.content)
|
86 |
-
elif isinstance(item, str):
|
87 |
-
response_parts.append(item)
|
88 |
-
|
89 |
-
ai_response = (
|
90 |
-
" ".join(response_parts) if response_parts else "No response generated"
|
91 |
-
)
|
92 |
-
except Exception as e:
|
93 |
-
ai_response = f"Error using agent: {str(e)}"
|
94 |
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
interaction = {
|
99 |
"timestamp": datetime.now().isoformat(),
|
@@ -102,12 +235,13 @@ async def process_webhook_comment(webhook_data: Dict[str, Any]):
|
|
102 |
"discussion_num": discussion_num,
|
103 |
"discussion_url": discussion_url,
|
104 |
"original_comment": comment_content,
|
105 |
-
"
|
106 |
-
"
|
|
|
107 |
}
|
108 |
|
109 |
-
|
110 |
-
return
|
111 |
|
112 |
|
113 |
@app.post("/webhook")
|
@@ -120,7 +254,8 @@ async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
|
|
120 |
payload = await request.json()
|
121 |
event = payload.get("event", {})
|
122 |
|
123 |
-
|
|
|
124 |
background_tasks.add_task(process_webhook_comment, payload)
|
125 |
return {"status": "processing"}
|
126 |
|
@@ -143,40 +278,64 @@ async def simulate_webhook(
|
|
143 |
},
|
144 |
"discussion": {
|
145 |
"title": discussion_title,
|
146 |
-
"num": len(
|
147 |
},
|
148 |
"repo": {"name": repo_name},
|
149 |
}
|
150 |
|
151 |
response = await process_webhook_comment(mock_payload)
|
152 |
-
return f"β
Processed!
|
153 |
|
154 |
|
155 |
def create_gradio_app():
|
156 |
"""Create Gradio interface"""
|
157 |
-
with gr.Blocks(title="HF
|
158 |
-
gr.Markdown("#
|
159 |
-
gr.Markdown("*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
with gr.Column():
|
162 |
-
sim_repo = gr.Textbox(
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
sim_comment = gr.Textbox(
|
165 |
label="Comment",
|
166 |
lines=3,
|
167 |
-
value="
|
|
|
168 |
)
|
169 |
-
sim_btn = gr.Button("
|
170 |
|
171 |
with gr.Column():
|
172 |
sim_result = gr.Textbox(label="Result", lines=8)
|
173 |
|
174 |
sim_btn.click(
|
175 |
-
|
176 |
inputs=[sim_repo, sim_title, sim_comment],
|
177 |
-
outputs=
|
178 |
)
|
179 |
|
|
|
|
|
|
|
|
|
|
|
180 |
return demo
|
181 |
|
182 |
|
@@ -186,7 +345,7 @@ app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
|
186 |
|
187 |
|
188 |
if __name__ == "__main__":
|
189 |
-
print("π Starting HF
|
190 |
-
print("π Dashboard: http://localhost:7860")
|
191 |
print("π Webhook: http://localhost:7860/webhook")
|
192 |
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|
|
|
1 |
import os
|
2 |
+
import re
|
3 |
+
import json
|
4 |
from datetime import datetime
|
5 |
+
from typing import List, Dict, Any, Optional, Literal
|
6 |
|
7 |
from fastapi import FastAPI, Request, BackgroundTasks
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
18 |
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "your-webhook-secret")
|
19 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
20 |
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium")
|
21 |
+
# Use a valid provider literal from the documentation
|
22 |
+
DEFAULT_PROVIDER: Literal["hf-inference"] = "hf-inference"
|
23 |
+
HF_PROVIDER = os.getenv("HF_PROVIDER", DEFAULT_PROVIDER)
|
24 |
|
25 |
+
# Simple storage for processed tag operations
|
26 |
+
tag_operations_store: List[Dict[str, Any]] = []
|
27 |
|
28 |
# Agent instance
|
29 |
agent_instance: Optional[Agent] = None
|
30 |
|
31 |
+
# Common ML tags that we recognize for auto-tagging
|
32 |
+
RECOGNIZED_TAGS = {
|
33 |
+
"pytorch",
|
34 |
+
"tensorflow",
|
35 |
+
"jax",
|
36 |
+
"transformers",
|
37 |
+
"diffusers",
|
38 |
+
"text-generation",
|
39 |
+
"text-classification",
|
40 |
+
"question-answering",
|
41 |
+
"text-to-image",
|
42 |
+
"image-classification",
|
43 |
+
"object-detection",
|
44 |
+
"conversational",
|
45 |
+
"fill-mask",
|
46 |
+
"token-classification",
|
47 |
+
"translation",
|
48 |
+
"summarization",
|
49 |
+
"feature-extraction",
|
50 |
+
"sentence-similarity",
|
51 |
+
"zero-shot-classification",
|
52 |
+
"image-to-text",
|
53 |
+
"automatic-speech-recognition",
|
54 |
+
"audio-classification",
|
55 |
+
"voice-activity-detection",
|
56 |
+
"depth-estimation",
|
57 |
+
"image-segmentation",
|
58 |
+
"video-classification",
|
59 |
+
"reinforcement-learning",
|
60 |
+
"tabular-classification",
|
61 |
+
"tabular-regression",
|
62 |
+
"time-series-forecasting",
|
63 |
+
"graph-ml",
|
64 |
+
"robotics",
|
65 |
+
"computer-vision",
|
66 |
+
"nlp",
|
67 |
+
"cv",
|
68 |
+
"multimodal",
|
69 |
+
}
|
70 |
+
|
71 |
|
72 |
class WebhookEvent(BaseModel):
|
73 |
event: Dict[str, str]
|
|
|
76 |
repo: Dict[str, str]
|
77 |
|
78 |
|
79 |
+
app = FastAPI(title="HF Tagging Bot")
|
80 |
app.add_middleware(CORSMiddleware, allow_origins=["*"])
|
81 |
|
82 |
|
|
|
86 |
if agent_instance is None and HF_TOKEN:
|
87 |
agent_instance = Agent(
|
88 |
model=HF_MODEL,
|
89 |
+
provider=DEFAULT_PROVIDER,
|
90 |
api_key=HF_TOKEN,
|
91 |
servers=[
|
92 |
{
|
93 |
"type": "stdio",
|
94 |
+
"config": {
|
95 |
+
"command": "python",
|
96 |
+
"args": ["mcp_server.py"],
|
97 |
+
"cwd": ".", # Ensure correct working directory
|
98 |
+
"env": {"HF_TOKEN": HF_TOKEN} if HF_TOKEN else {},
|
99 |
+
},
|
100 |
}
|
101 |
],
|
102 |
)
|
|
|
104 |
return agent_instance
|
105 |
|
106 |
|
107 |
+
def extract_tags_from_text(text: str) -> List[str]:
|
108 |
+
"""Extract potential tags from discussion text"""
|
109 |
+
text_lower = text.lower()
|
110 |
+
|
111 |
+
# Look for explicit tag mentions like "tag: pytorch" or "#pytorch"
|
112 |
+
explicit_tags = []
|
113 |
+
|
114 |
+
# Pattern 1: "tag: something" or "tags: something"
|
115 |
+
tag_pattern = r"tags?:\s*([a-zA-Z0-9-_,\s]+)"
|
116 |
+
matches = re.findall(tag_pattern, text_lower)
|
117 |
+
for match in matches:
|
118 |
+
# Split by comma and clean up
|
119 |
+
tags = [tag.strip() for tag in match.split(",")]
|
120 |
+
explicit_tags.extend(tags)
|
121 |
+
|
122 |
+
# Pattern 2: "#hashtag" style
|
123 |
+
hashtag_pattern = r"#([a-zA-Z0-9-_]+)"
|
124 |
+
hashtag_matches = re.findall(hashtag_pattern, text_lower)
|
125 |
+
explicit_tags.extend(hashtag_matches)
|
126 |
+
|
127 |
+
# Pattern 3: Look for recognized tags mentioned in natural text
|
128 |
+
mentioned_tags = []
|
129 |
+
for tag in RECOGNIZED_TAGS:
|
130 |
+
if tag in text_lower:
|
131 |
+
mentioned_tags.append(tag)
|
132 |
+
|
133 |
+
# Combine and deduplicate
|
134 |
+
all_tags = list(set(explicit_tags + mentioned_tags))
|
135 |
+
|
136 |
+
# Filter to only include recognized tags or explicitly mentioned ones
|
137 |
+
valid_tags = []
|
138 |
+
for tag in all_tags:
|
139 |
+
if tag in RECOGNIZED_TAGS or tag in explicit_tags:
|
140 |
+
valid_tags.append(tag)
|
141 |
+
|
142 |
+
return valid_tags
|
143 |
+
|
144 |
+
|
145 |
async def process_webhook_comment(webhook_data: Dict[str, Any]):
|
146 |
+
"""Process webhook to detect and add tags"""
|
147 |
comment_content = webhook_data["comment"]["content"]
|
148 |
discussion_title = webhook_data["discussion"]["title"]
|
149 |
repo_name = webhook_data["repo"]["name"]
|
150 |
discussion_num = webhook_data["discussion"]["num"]
|
151 |
+
comment_author = webhook_data["comment"]["author"]
|
152 |
|
153 |
+
# Extract potential tags from the comment and discussion title
|
154 |
+
comment_tags = extract_tags_from_text(comment_content)
|
155 |
+
title_tags = extract_tags_from_text(discussion_title)
|
156 |
+
all_tags = list(set(comment_tags + title_tags))
|
157 |
+
|
158 |
+
result_messages = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
if not all_tags:
|
161 |
+
result_messages.append("No recognizable tags found in the discussion.")
|
162 |
+
else:
|
163 |
+
agent = await get_agent()
|
164 |
+
if not agent:
|
165 |
+
msg = "Error: Agent not configured (missing HF_TOKEN)"
|
166 |
+
result_messages.append(msg)
|
167 |
+
else:
|
168 |
+
# Process each tag
|
169 |
+
for tag in all_tags:
|
170 |
+
try:
|
171 |
+
# Get response from agent
|
172 |
+
responses = []
|
173 |
+
prompt = (
|
174 |
+
f"Add the tag '{tag}' to repository {repo_name} "
|
175 |
+
"using add_new_tag"
|
176 |
+
)
|
177 |
+
|
178 |
+
async for item in agent.run(prompt):
|
179 |
+
# Just collect the response content
|
180 |
+
responses.append(str(item))
|
181 |
+
|
182 |
+
response_text = " ".join(responses) if responses else "Completed"
|
183 |
+
|
184 |
+
# Try to parse JSON from response if possible
|
185 |
+
try:
|
186 |
+
# Look for JSON in the response
|
187 |
+
json_found = False
|
188 |
+
for response_part in responses:
|
189 |
+
response_str = str(response_part)
|
190 |
+
if "{" in response_str and "}" in response_str:
|
191 |
+
# Try to extract JSON from the response
|
192 |
+
start_idx = response_str.find("{")
|
193 |
+
end_idx = response_str.rfind("}") + 1
|
194 |
+
json_str = response_str[start_idx:end_idx]
|
195 |
+
|
196 |
+
try:
|
197 |
+
json_response = json.loads(json_str)
|
198 |
+
status = json_response.get("status")
|
199 |
+
if status == "success":
|
200 |
+
pr_url = json_response.get("pr_url", "")
|
201 |
+
msg = f"Tag '{tag}': PR created - {pr_url}"
|
202 |
+
elif status == "already_exists":
|
203 |
+
msg = f"Tag '{tag}': Already exists"
|
204 |
+
else:
|
205 |
+
tag_msg = json_response.get(
|
206 |
+
"message", "Processed"
|
207 |
+
)
|
208 |
+
msg = f"Tag '{tag}': {tag_msg}"
|
209 |
+
json_found = True
|
210 |
+
break
|
211 |
+
except json.JSONDecodeError:
|
212 |
+
continue
|
213 |
+
|
214 |
+
if not json_found:
|
215 |
+
# If no JSON found, use the response as is
|
216 |
+
msg = f"Tag '{tag}': {response_text}"
|
217 |
+
|
218 |
+
except Exception as parse_error:
|
219 |
+
msg = f"Tag '{tag}': Response parse error - {response_text}"
|
220 |
+
|
221 |
+
result_messages.append(msg)
|
222 |
+
|
223 |
+
except Exception as e:
|
224 |
+
error_msg = f"Error processing tag '{tag}': {str(e)}"
|
225 |
+
result_messages.append(error_msg)
|
226 |
+
|
227 |
+
# Store the interaction
|
228 |
+
base_url = "https://huggingface.co"
|
229 |
+
discussion_url = f"{base_url}/{repo_name}/discussions/{discussion_num}"
|
230 |
|
231 |
interaction = {
|
232 |
"timestamp": datetime.now().isoformat(),
|
|
|
235 |
"discussion_num": discussion_num,
|
236 |
"discussion_url": discussion_url,
|
237 |
"original_comment": comment_content,
|
238 |
+
"comment_author": comment_author,
|
239 |
+
"detected_tags": all_tags,
|
240 |
+
"results": result_messages,
|
241 |
}
|
242 |
|
243 |
+
tag_operations_store.append(interaction)
|
244 |
+
return " | ".join(result_messages)
|
245 |
|
246 |
|
247 |
@app.post("/webhook")
|
|
|
254 |
payload = await request.json()
|
255 |
event = payload.get("event", {})
|
256 |
|
257 |
+
scope_check = event.get("scope") == "discussion.comment"
|
258 |
+
if event.get("action") == "create" and scope_check:
|
259 |
background_tasks.add_task(process_webhook_comment, payload)
|
260 |
return {"status": "processing"}
|
261 |
|
|
|
278 |
},
|
279 |
"discussion": {
|
280 |
"title": discussion_title,
|
281 |
+
"num": len(tag_operations_store) + 1,
|
282 |
},
|
283 |
"repo": {"name": repo_name},
|
284 |
}
|
285 |
|
286 |
response = await process_webhook_comment(mock_payload)
|
287 |
+
return f"β
Processed! Results: {response}"
|
288 |
|
289 |
|
290 |
def create_gradio_app():
|
291 |
"""Create Gradio interface"""
|
292 |
+
with gr.Blocks(title="HF Tagging Bot", theme=gr.themes.Soft()) as demo:
|
293 |
+
gr.Markdown("# π·οΈ HF Tagging Bot Dashboard")
|
294 |
+
gr.Markdown("*Automatically adds tags to models when mentioned in discussions*")
|
295 |
+
|
296 |
+
gr.Markdown("""
|
297 |
+
## How it works:
|
298 |
+
- Monitors HuggingFace Hub discussions
|
299 |
+
- Detects tag mentions in comments (e.g., "tag: pytorch",
|
300 |
+
"#transformers")
|
301 |
+
- Automatically adds recognized tags to the model repository
|
302 |
+
- Supports common ML tags like: pytorch, tensorflow,
|
303 |
+
text-generation, etc.
|
304 |
+
""")
|
305 |
|
306 |
with gr.Column():
|
307 |
+
sim_repo = gr.Textbox(
|
308 |
+
label="Repository",
|
309 |
+
value="burtenshaw/play-mcp-repo-bot",
|
310 |
+
placeholder="username/model-name",
|
311 |
+
)
|
312 |
+
sim_title = gr.Textbox(
|
313 |
+
label="Discussion Title",
|
314 |
+
value="Add pytorch tag",
|
315 |
+
placeholder="Discussion title",
|
316 |
+
)
|
317 |
sim_comment = gr.Textbox(
|
318 |
label="Comment",
|
319 |
lines=3,
|
320 |
+
value="This model should have tags: pytorch, text-generation",
|
321 |
+
placeholder="Comment mentioning tags...",
|
322 |
)
|
323 |
+
sim_btn = gr.Button("π·οΈ Test Tag Detection")
|
324 |
|
325 |
with gr.Column():
|
326 |
sim_result = gr.Textbox(label="Result", lines=8)
|
327 |
|
328 |
sim_btn.click(
|
329 |
+
simulate_webhook,
|
330 |
inputs=[sim_repo, sim_title, sim_comment],
|
331 |
+
outputs=sim_result,
|
332 |
)
|
333 |
|
334 |
+
gr.Markdown(f"""
|
335 |
+
## Recognized Tags:
|
336 |
+
{", ".join(sorted(RECOGNIZED_TAGS))}
|
337 |
+
""")
|
338 |
+
|
339 |
return demo
|
340 |
|
341 |
|
|
|
345 |
|
346 |
|
347 |
if __name__ == "__main__":
|
348 |
+
print("π Starting HF Tagging Bot...")
|
349 |
+
print("π Dashboard: http://localhost:7860/gradio")
|
350 |
print("π Webhook: http://localhost:7860/webhook")
|
351 |
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|
mcp_server.py
CHANGED
@@ -1,80 +1,144 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
-
Simplified MCP Server for HuggingFace Hub Operations using FastMCP
|
4 |
"""
|
5 |
|
6 |
import os
|
|
|
7 |
from fastmcp import FastMCP
|
8 |
-
from huggingface_hub import
|
|
|
9 |
from dotenv import load_dotenv
|
10 |
|
11 |
load_dotenv()
|
12 |
|
13 |
# Configuration
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
-
DEFAULT_MODEL = os.getenv("HF_MODEL", "Qwen/Qwen2.5-72B-Instruct")
|
16 |
|
17 |
-
# Initialize HF client
|
18 |
-
|
19 |
-
InferenceClient(model=DEFAULT_MODEL, token=HF_TOKEN) if HF_TOKEN else None
|
20 |
-
)
|
21 |
|
22 |
# Create the FastMCP server
|
23 |
-
mcp = FastMCP("hf-
|
24 |
|
25 |
|
26 |
@mcp.tool()
|
27 |
-
def
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
if not inference_client:
|
32 |
-
return "Error: HF token not configured for inference"
|
33 |
-
|
34 |
-
prompt = f"""
|
35 |
-
Discussion: {discussion_title}
|
36 |
-
Repository: {repo_name}
|
37 |
-
Comment: {comment_content}
|
38 |
-
|
39 |
-
Provide a helpful response to this comment.
|
40 |
-
"""
|
41 |
|
42 |
try:
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
ai_response = content.strip() if content else "No response generated"
|
54 |
-
return ai_response
|
55 |
|
56 |
except Exception as e:
|
57 |
-
|
|
|
58 |
|
59 |
|
60 |
@mcp.tool()
|
61 |
-
def
|
62 |
-
"""
|
63 |
-
if not
|
64 |
-
return "
|
65 |
|
66 |
try:
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
repo_id=repo_id,
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
token=HF_TOKEN,
|
|
|
72 |
)
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
except Exception as e:
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
if __name__ == "__main__":
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
+
Simplified MCP Server for HuggingFace Hub Tagging Operations using FastMCP
|
4 |
"""
|
5 |
|
6 |
import os
|
7 |
+
import json
|
8 |
from fastmcp import FastMCP
|
9 |
+
from huggingface_hub import HfApi, model_info, ModelCard, ModelCardData
|
10 |
+
from huggingface_hub.utils import HfHubHTTPError
|
11 |
from dotenv import load_dotenv
|
12 |
|
13 |
load_dotenv()
|
14 |
|
15 |
# Configuration
|
16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
17 |
|
18 |
+
# Initialize HF API client
|
19 |
+
hf_api = HfApi(token=HF_TOKEN) if HF_TOKEN else None
|
|
|
|
|
20 |
|
21 |
# Create the FastMCP server
|
22 |
+
mcp = FastMCP("hf-tagging-bot")
|
23 |
|
24 |
|
25 |
@mcp.tool()
|
26 |
+
def get_current_tags(repo_id: str) -> str:
|
27 |
+
"""Get current tags from a HuggingFace model repository"""
|
28 |
+
if not hf_api:
|
29 |
+
return json.dumps({"error": "HF token not configured"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
try:
|
32 |
+
info = model_info(repo_id=repo_id, token=HF_TOKEN)
|
33 |
+
current_tags = info.tags if info.tags else []
|
34 |
+
|
35 |
+
result = {
|
36 |
+
"status": "success",
|
37 |
+
"repo_id": repo_id,
|
38 |
+
"current_tags": current_tags,
|
39 |
+
"count": len(current_tags),
|
40 |
+
}
|
41 |
+
return json.dumps(result)
|
|
|
|
|
42 |
|
43 |
except Exception as e:
|
44 |
+
error_result = {"status": "error", "repo_id": repo_id, "error": str(e)}
|
45 |
+
return json.dumps(error_result)
|
46 |
|
47 |
|
48 |
@mcp.tool()
|
49 |
+
def add_new_tag(repo_id: str, new_tag: str) -> str:
|
50 |
+
"""Add a new tag to a HuggingFace model repository via PR"""
|
51 |
+
if not hf_api:
|
52 |
+
return json.dumps({"error": "HF token not configured"})
|
53 |
|
54 |
try:
|
55 |
+
# Get current model info and tags
|
56 |
+
info = model_info(repo_id=repo_id, token=HF_TOKEN)
|
57 |
+
current_tags = info.tags if info.tags else []
|
58 |
+
|
59 |
+
# Check if tag already exists
|
60 |
+
if new_tag in current_tags:
|
61 |
+
result = {
|
62 |
+
"status": "already_exists",
|
63 |
+
"repo_id": repo_id,
|
64 |
+
"tag": new_tag,
|
65 |
+
"message": f"Tag '{new_tag}' already exists",
|
66 |
+
}
|
67 |
+
return json.dumps(result)
|
68 |
+
|
69 |
+
# Add the new tag to existing tags
|
70 |
+
updated_tags = current_tags + [new_tag]
|
71 |
+
|
72 |
+
# Create model card content with updated tags
|
73 |
+
try:
|
74 |
+
# Load existing model card
|
75 |
+
card = ModelCard.load(repo_id, token=HF_TOKEN)
|
76 |
+
if not hasattr(card, "data") or card.data is None:
|
77 |
+
card.data = ModelCardData()
|
78 |
+
except HfHubHTTPError:
|
79 |
+
# Create new model card if none exists
|
80 |
+
card = ModelCard("")
|
81 |
+
card.data = ModelCardData()
|
82 |
+
|
83 |
+
# Update tags - create new ModelCardData with updated tags
|
84 |
+
card_dict = card.data.to_dict()
|
85 |
+
card_dict["tags"] = updated_tags
|
86 |
+
card.data = ModelCardData(**card_dict)
|
87 |
+
|
88 |
+
# Create a pull request with the updated model card
|
89 |
+
pr_title = f"Add '{new_tag}' tag"
|
90 |
+
pr_description = f"""
|
91 |
+
## Add tag: {new_tag}
|
92 |
+
|
93 |
+
This PR adds the `{new_tag}` tag to the model repository.
|
94 |
+
|
95 |
+
**Changes:**
|
96 |
+
- Added `{new_tag}` to model tags
|
97 |
+
- Updated from {len(current_tags)} to {len(updated_tags)} tags
|
98 |
+
|
99 |
+
**Current tags:** {", ".join(current_tags) if current_tags else "None"}
|
100 |
+
**New tags:** {", ".join(updated_tags)}
|
101 |
+
"""
|
102 |
+
|
103 |
+
# Create commit with updated model card using CommitOperationAdd
|
104 |
+
from huggingface_hub import CommitOperationAdd
|
105 |
+
|
106 |
+
commit_info = hf_api.create_commit(
|
107 |
repo_id=repo_id,
|
108 |
+
operations=[
|
109 |
+
CommitOperationAdd(
|
110 |
+
path_in_repo="README.md", path_or_fileobj=str(card).encode("utf-8")
|
111 |
+
)
|
112 |
+
],
|
113 |
+
commit_message=pr_title,
|
114 |
+
commit_description=pr_description,
|
115 |
token=HF_TOKEN,
|
116 |
+
create_pr=True,
|
117 |
)
|
118 |
+
|
119 |
+
# Extract PR URL from commit info
|
120 |
+
pr_url_attr = commit_info.pr_url
|
121 |
+
pr_url = pr_url_attr if hasattr(commit_info, "pr_url") else str(commit_info)
|
122 |
+
|
123 |
+
result = {
|
124 |
+
"status": "success",
|
125 |
+
"repo_id": repo_id,
|
126 |
+
"tag": new_tag,
|
127 |
+
"pr_url": pr_url,
|
128 |
+
"previous_tags": current_tags,
|
129 |
+
"new_tags": updated_tags,
|
130 |
+
"message": f"Created PR to add tag '{new_tag}'",
|
131 |
+
}
|
132 |
+
return json.dumps(result)
|
133 |
|
134 |
except Exception as e:
|
135 |
+
error_result = {
|
136 |
+
"status": "error",
|
137 |
+
"repo_id": repo_id,
|
138 |
+
"tag": new_tag,
|
139 |
+
"error": str(e),
|
140 |
+
}
|
141 |
+
return json.dumps(error_result)
|
142 |
|
143 |
|
144 |
if __name__ == "__main__":
|