Spaces:
Running
Running
burtenshaw
commited on
Commit
Β·
cf9a1ba
1
Parent(s):
05c2ac8
rename app.py
Browse files
app.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datetime import datetime
|
3 |
+
from typing import List, Dict, Any, Optional
|
4 |
+
|
5 |
+
from fastapi import FastAPI, Request, BackgroundTasks
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
import gradio as gr
|
8 |
+
import uvicorn
|
9 |
+
from pydantic import BaseModel
|
10 |
+
from huggingface_hub.inference._mcp.agent import Agent
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# Configuration
|
16 |
+
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET", "your-webhook-secret")
|
17 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
18 |
+
HF_MODEL = os.getenv("HF_MODEL", "microsoft/DialoGPT-medium")
|
19 |
+
HF_PROVIDER = os.getenv("HF_PROVIDER", "huggingface")
|
20 |
+
|
21 |
+
# Simple storage for processed comments
|
22 |
+
comments_store: List[Dict[str, Any]] = []
|
23 |
+
|
24 |
+
# Agent instance
|
25 |
+
agent_instance: Optional[Agent] = None
|
26 |
+
|
27 |
+
|
28 |
+
class WebhookEvent(BaseModel):
|
29 |
+
event: Dict[str, str]
|
30 |
+
comment: Dict[str, Any]
|
31 |
+
discussion: Dict[str, Any]
|
32 |
+
repo: Dict[str, str]
|
33 |
+
|
34 |
+
|
35 |
+
app = FastAPI(title="HF Discussion Bot")
|
36 |
+
app.add_middleware(CORSMiddleware, allow_origins=["*"])
|
37 |
+
|
38 |
+
|
39 |
+
async def get_agent():
|
40 |
+
"""Get or create Agent instance"""
|
41 |
+
global agent_instance
|
42 |
+
if agent_instance is None and HF_TOKEN:
|
43 |
+
agent_instance = Agent(
|
44 |
+
model=HF_MODEL,
|
45 |
+
provider=HF_PROVIDER,
|
46 |
+
api_key=HF_TOKEN,
|
47 |
+
servers=[
|
48 |
+
{
|
49 |
+
"type": "stdio",
|
50 |
+
"config": {"command": "python", "args": ["mcp_server.py"]},
|
51 |
+
}
|
52 |
+
],
|
53 |
+
)
|
54 |
+
await agent_instance.load_tools()
|
55 |
+
return agent_instance
|
56 |
+
|
57 |
+
|
58 |
+
async def process_webhook_comment(webhook_data: Dict[str, Any]):
|
59 |
+
"""Process webhook using Agent with MCP tools"""
|
60 |
+
comment_content = webhook_data["comment"]["content"]
|
61 |
+
discussion_title = webhook_data["discussion"]["title"]
|
62 |
+
repo_name = webhook_data["repo"]["name"]
|
63 |
+
discussion_num = webhook_data["discussion"]["num"]
|
64 |
+
|
65 |
+
agent = await get_agent()
|
66 |
+
if not agent:
|
67 |
+
ai_response = "Error: Agent not configured (missing HF_TOKEN)"
|
68 |
+
else:
|
69 |
+
# Use Agent to respond to the discussion
|
70 |
+
prompt = f"""
|
71 |
+
Please respond to this HuggingFace discussion comment using the available tools.
|
72 |
+
|
73 |
+
Repository: {repo_name}
|
74 |
+
Discussion: {discussion_title} (#{discussion_num})
|
75 |
+
Comment: {comment_content}
|
76 |
+
|
77 |
+
First use generate_discussion_response to create a helpful response, then use post_discussion_comment to post it.
|
78 |
+
"""
|
79 |
+
|
80 |
+
try:
|
81 |
+
response_parts = []
|
82 |
+
async for item in agent.run(prompt):
|
83 |
+
# Collect the agent's response
|
84 |
+
if hasattr(item, "content") and item.content:
|
85 |
+
response_parts.append(item.content)
|
86 |
+
elif isinstance(item, str):
|
87 |
+
response_parts.append(item)
|
88 |
+
|
89 |
+
ai_response = (
|
90 |
+
" ".join(response_parts) if response_parts else "No response generated"
|
91 |
+
)
|
92 |
+
except Exception as e:
|
93 |
+
ai_response = f"Error using agent: {str(e)}"
|
94 |
+
|
95 |
+
# Store the interaction with reply link
|
96 |
+
discussion_url = f"https://huggingface.co/{repo_name}/discussions/{discussion_num}"
|
97 |
+
|
98 |
+
interaction = {
|
99 |
+
"timestamp": datetime.now().isoformat(),
|
100 |
+
"repo": repo_name,
|
101 |
+
"discussion_title": discussion_title,
|
102 |
+
"discussion_num": discussion_num,
|
103 |
+
"discussion_url": discussion_url,
|
104 |
+
"original_comment": comment_content,
|
105 |
+
"ai_response": ai_response,
|
106 |
+
"comment_author": webhook_data["comment"]["author"],
|
107 |
+
}
|
108 |
+
|
109 |
+
comments_store.append(interaction)
|
110 |
+
return ai_response
|
111 |
+
|
112 |
+
|
113 |
+
@app.post("/webhook")
|
114 |
+
async def webhook_handler(request: Request, background_tasks: BackgroundTasks):
|
115 |
+
"""Handle HF Hub webhooks"""
|
116 |
+
webhook_secret = request.headers.get("X-Webhook-Secret")
|
117 |
+
if webhook_secret != WEBHOOK_SECRET:
|
118 |
+
return {"error": "Invalid webhook secret"}
|
119 |
+
|
120 |
+
payload = await request.json()
|
121 |
+
event = payload.get("event", {})
|
122 |
+
|
123 |
+
if event.get("action") == "create" and event.get("scope") == "discussion.comment":
|
124 |
+
background_tasks.add_task(process_webhook_comment, payload)
|
125 |
+
return {"status": "processing"}
|
126 |
+
|
127 |
+
return {"status": "ignored"}
|
128 |
+
|
129 |
+
|
130 |
+
async def simulate_webhook(
|
131 |
+
repo_name: str, discussion_title: str, comment_content: str
|
132 |
+
) -> str:
|
133 |
+
"""Simulate webhook for testing"""
|
134 |
+
if not all([repo_name, discussion_title, comment_content]):
|
135 |
+
return "Please fill in all fields."
|
136 |
+
|
137 |
+
mock_payload = {
|
138 |
+
"event": {"action": "create", "scope": "discussion.comment"},
|
139 |
+
"comment": {
|
140 |
+
"content": comment_content,
|
141 |
+
"author": "test-user",
|
142 |
+
"created_at": datetime.now().isoformat(),
|
143 |
+
},
|
144 |
+
"discussion": {
|
145 |
+
"title": discussion_title,
|
146 |
+
"num": len(comments_store) + 1,
|
147 |
+
},
|
148 |
+
"repo": {"name": repo_name},
|
149 |
+
}
|
150 |
+
|
151 |
+
response = await process_webhook_comment(mock_payload)
|
152 |
+
return f"β
Processed! AI Response: {response}"
|
153 |
+
|
154 |
+
|
155 |
+
def create_gradio_app():
|
156 |
+
"""Create Gradio interface"""
|
157 |
+
with gr.Blocks(title="HF Discussion Bot", theme=gr.themes.Soft()) as demo:
|
158 |
+
gr.Markdown("# π€ HF Discussion Bot Dashboard")
|
159 |
+
gr.Markdown("*Powered by HuggingFace Tiny Agents + FastMCP*")
|
160 |
+
|
161 |
+
with gr.Column():
|
162 |
+
sim_repo = gr.Textbox(label="Repository", value="microsoft/DialoGPT-medium")
|
163 |
+
sim_title = gr.Textbox(label="Discussion Title", value="Test Discussion")
|
164 |
+
sim_comment = gr.Textbox(
|
165 |
+
label="Comment",
|
166 |
+
lines=3,
|
167 |
+
value="How do I use this model?",
|
168 |
+
)
|
169 |
+
sim_btn = gr.Button("π€ Test Webhook")
|
170 |
+
|
171 |
+
with gr.Column():
|
172 |
+
sim_result = gr.Textbox(label="Result", lines=8)
|
173 |
+
|
174 |
+
sim_btn.click(
|
175 |
+
fn=simulate_webhook,
|
176 |
+
inputs=[sim_repo, sim_title, sim_comment],
|
177 |
+
outputs=[sim_result],
|
178 |
+
)
|
179 |
+
|
180 |
+
return demo
|
181 |
+
|
182 |
+
|
183 |
+
# Mount Gradio app
|
184 |
+
gradio_app = create_gradio_app()
|
185 |
+
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
186 |
+
|
187 |
+
|
188 |
+
if __name__ == "__main__":
|
189 |
+
print("π Starting HF Discussion Bot with Tiny Agents...")
|
190 |
+
print("π Dashboard: http://localhost:8001/gradio")
|
191 |
+
print("π Webhook: http://localhost:8001/webhook")
|
192 |
+
uvicorn.run("server:app", host="0.0.0.0", port=8001, reload=True)
|