import streamlit as st from transformers import pipeline def main(): # Set up the Streamlit app title and description st.title("Hugging Face Model Summarization") st.write("This app uses a Hugging Face model to summarize text. Enter your text below and click 'Summarize'.") # Initialize the summarization pipeline from Hugging Face summarizer = pipeline("summarization") # Create a text area for user input text = st.text_area("Enter text here:", placeholder="Type your text here...") # Button to trigger summarization if st.button("Summarize"): if text: try: # Generate the summary using the Hugging Face model summary = summarizer(text, max_length=130, min_length=30, do_sample=False) st.write("Summary:") st.write(summary[0]['summary_text']) except Exception as e: st.error(f"An error occurred during summarization: {e}") else: st.error("Please enter some text to summarize.") if __name__ == "__main__": main()