Spaces:
Running
Running
File size: 9,008 Bytes
d74c04c 82049c5 d74c04c 82049c5 d74c04c fd6bf44 d74c04c fd6bf44 d74c04c fd6bf44 d74c04c fd6bf44 d74c04c 82049c5 d74c04c fd6bf44 d74c04c fd6bf44 d74c04c fb0da86 d74c04c b6a5508 d74c04c fd6bf44 d74c04c fd6bf44 7a68087 d74c04c fd6bf44 7a68087 d74c04c 81863ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
import weaviate
from weaviate.auth import Auth
from sentence_transformers import SentenceTransformer
from weaviate.classes.query import MetadataQuery
from weaviate.collections.classes.filters import Filter
from typing import List, Dict, Any
import os
from dotenv import load_dotenv
import pandas as pd
import re
from functools import lru_cache
# Load environment variables
load_dotenv()
# Validate environment variables
WEAVIATE_URL = os.getenv("WEAVIATE_URL")
WEAVIATE_API_KEY = os.getenv("WEAVIATE_API_KEY")
COLLECTION_NAME = os.getenv("COLLECTION_NAME")
if not all([WEAVIATE_URL, WEAVIATE_API_KEY, COLLECTION_NAME]):
raise ValueError(
"Missing required environment variables. Please ensure the following are set:\n"
"WEAVIATE_URL\n"
"WEAVIATE_API_KEY\n"
"COLLECTION_NAME"
)
# Initialize the model
model = SentenceTransformer('sentence-transformers/LaBSE')
# Book mappings
VULGATE_BOOKS = {
"Genesis": "Gn", "Exodus": "Ex", "Leviticus": "Lv", "Numbers": "Nm",
"Deuteronomy": "Dt", "Joshua": "Jos", "Judges": "Jdc", "Ruth": "Rt",
"1 Samuel": "1Rg", "2 Samuel": "2Rg", "1 Kings": "3Rg", "2 Kings": "4Rg",
"1 Chronicles": "1Par", "2 Chronicles": "2Par", "Ezra": "Esr",
"Nehemiah": "Neh", "Tobit": "Tob", "Judith": "Jdt", "Esther": "Est",
"1 Maccabees": "1Mcc", "2 Maccabees": "2Mcc", "Job": "Job", "Psalms": "Ps",
"Proverbs": "Pr", "Ecclesiastes": "Ecl", "Song of Solomon": "Ct",
"Wisdom": "Sap", "Sirach": "Sir", "Isaiah": "Is", "Jeremiah": "Jr",
"Lamentations": "Lam", "Baruch": "Bar", "Ezekiel": "Ez", "Daniel": "Dn",
"Hosea": "Os", "Joel": "Joel", "Amos": "Am", "Obadiah": "Abd",
"Jonah": "Jon", "Micah": "Mch", "Nahum": "Nah", "Habakkuk": "Hab",
"Zephaniah": "Soph", "Haggai": "Agg", "Zechariah": "Zach",
"Malachi": "Mal", "Matthew": "Mt", "Mark": "Mc", "Luke": "Lc",
"John": "Jo", "Acts": "Act", "Romans": "Rom", "1 Corinthians": "1Cor",
"2 Corinthians": "2Cor", "Galatians": "Gal", "Ephesians": "Eph",
"Philippians": "Phlp", "Colossians": "Col", "1 Thessalonians": "1Thes",
"2 Thessalonians": "2Thes", "1 Timothy": "1Tim", "2 Timothy": "2Tim",
"Titus": "Tit", "Philemon": "Phlm", "Hebrews": "Hbr", "James": "Jac",
"1 Peter": "1Ptr", "2 Peter": "2Ptr", "1 John": "1Jo", "2 John": "2Jo",
"3 John": "3Jo", "Jude": "Jud", "Revelation": "Apc"
}
@lru_cache(maxsize=1)
def load_vulgate_csv():
df = pd.read_csv("data/clem_vulgate.csv")
# Expect columns: book, chapter, verse, text
return df
def highlight_matching_words(text: str, query: str) -> str:
if not query.strip():
return text
query_words = set(re.findall(r'\b\w+\b', query.lower()))
if not query_words:
return text
partial_pattern = re.compile(r'(' + '|'.join(re.escape(w) for w in query_words) + r')', re.IGNORECASE)
tokens = re.findall(r'\w+|\W+', text)
highlighted = []
for token in tokens:
token_lc = token.lower()
if token_lc in query_words:
highlighted.append(f'<b>{token}</b>')
elif token.strip() and token.isalpha() and any(w in token_lc and w != token_lc for w in query_words):
def bold_sub(m):
return f'<em>{m.group(0)}</em>'
highlighted.append(partial_pattern.sub(bold_sub, token))
else:
highlighted.append(token)
return ''.join(highlighted)
def find_similar(query: str, books: List[str], limit: int = 50, search_method: str = "vector") -> List[Dict[str, Any]]:
try:
client = weaviate.connect_to_weaviate_cloud(
cluster_url=WEAVIATE_URL,
auth_credentials=Auth.api_key(WEAVIATE_API_KEY),
)
try:
vulgate = client.collections.get(COLLECTION_NAME)
filter_condition = None
if books:
selected_books = [VULGATE_BOOKS[book] for book in books]
filter_condition = Filter.by_property("book").contains_any(selected_books)
# Always encode the query vector since we need it for both vector and hybrid search
query_vector = model.encode([query])[0]
if search_method == "vector":
response = vulgate.query.near_vector(
near_vector=query_vector,
limit=limit,
return_metadata=MetadataQuery(distance=True),
filters=filter_condition
)
elif search_method == "bm25":
response = vulgate.query.bm25(
query=query,
limit=limit,
filters=filter_condition
)
else: # hybrid
response = vulgate.query.hybrid(
query=query,
vector=query_vector,
limit=limit,
filters=filter_condition
)
results = []
for obj in response.objects:
highlighted_text = highlight_matching_words(obj.properties["text"], query)
# Handle different types of scores
similarity = 1.0 # default value
if hasattr(obj.metadata, 'distance') and obj.metadata.distance is not None:
similarity = 1 - obj.metadata.distance
elif hasattr(obj.metadata, 'score') and obj.metadata.score is not None:
similarity = obj.metadata.score
results.append({
"Reference": f"{obj.properties['book']} {obj.properties['chapter']}:{obj.properties['verse']}",
"Book": obj.properties["book"],
"Chapter": obj.properties["chapter"],
"Verse": obj.properties["verse"],
"Text": highlighted_text,
"RawText": obj.properties["text"],
"Similarity": round(similarity, 3)
})
return results
finally:
client.close()
except Exception as e:
return [{"Error": str(e)}]
def format_results_html(results: List[Dict[str, Any]]) -> str:
if not results:
return "<div>No results found.</div>"
if "Error" in results[0]:
return f'<div style="color:red">Error: {results[0]["Error"]}</div>'
html = [
'<table border="1">',
'<thead><tr>'
'<th>Reference</th><th>Text</th><th>Similarity</th><th>Book</th><th>Chapter</th><th>Verse</th>'
'</tr></thead><tbody>'
]
for r in results:
html.append(f'<tr>'
f'<td>{r["Reference"]}</td>'
f'<td>{r["Text"]}</td>'
f'<td>{r["Similarity"]}</td>'
f'<td>{r["Book"]}</td>'
f'<td>{r["Chapter"]}</td>'
f'<td>{r["Verse"]}</td>'
f'</tr>')
html.append('</tbody></table>')
return ''.join(html)
def search(query: str, books: List[str], limit: int, search_method: str) -> str:
if not query.strip():
return "<div>Please enter a search query.</div>"
results = find_similar(query, books, limit, search_method)
return format_results_html(results)
with gr.Blocks(title="Latin Vulgate Verse Similarity Search", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Latin Vulgate Verse Similarity Search
Search for similar verses in the Latin Vulgate Bible using semantic similarity.
<br>Words matching your query will be highlighted (exact matches and partial matches).
""")
with gr.Row():
query = gr.Textbox(
label="Search Query",
placeholder="Enter your search query...",
lines=2,
scale=3
)
with gr.Row():
with gr.Column(scale=2):
book_select = gr.Dropdown(
choices=list(VULGATE_BOOKS.keys()),
label="Select Books (Optional)",
multiselect=True
)
with gr.Row():
with gr.Column(scale=1):
search_method = gr.Radio(
choices=["vector", "bm25", "hybrid"],
label="Search Method",
value="vector"
)
with gr.Column(scale=1):
limit = gr.Slider(
minimum=1,
maximum=50,
value=20,
step=1,
label="Number of results"
)
with gr.Row():
search_btn = gr.Button("Search", variant="primary")
output = gr.HTML(label="Results")
search_btn.click(
fn=search,
inputs=[query, book_select, limit, search_method],
outputs=output,
api_name="predict"
)
query.submit(
fn=search,
inputs=[query, book_select, limit, search_method],
outputs=output,
api_name=False # Disable API for submit to avoid conflicts
)
if __name__ == "__main__":
demo.launch(
show_api=True,
share=False
)
|