# --- Imports --- import os import shutil import traceback import asyncio import subprocess from datetime import datetime import gradio as gr import torch import numpy as np import librosa import soundfile as sf import yt_dlp import edge_tts from fairseq import checkpoint_utils # --- Local Module Imports --- from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from vc_infer_pipeline import VC from config import Config # --- Constants and Configuration --- now_dir = os.getcwd() config = Config() # Define paths for read-only models from the repository HUBERT_PATH = os.path.join(now_dir, "pretraineds", "hubert_base.pt") RMVPE_PATH = os.path.join(now_dir, "pretraineds", "rmvpe.pt") WEIGHT_ROOT = os.path.join(now_dir, "weights") INDEX_ROOT = os.path.join(WEIGHT_ROOT, "index") # The /app directory is read-only in the Docker environment. main_tmp_dir = "/tmp/rvc_app" output_dir = os.path.join(main_tmp_dir, "output") # For demucs output dl_audio_dir = os.path.join(main_tmp_dir, "dl_audio") # For youtube-dl output tts_audio_dir = os.path.join(main_tmp_dir, "tts") # For tts output # Create all necessary temporary directories at startup shutil.rmtree(main_tmp_dir, ignore_errors=True) os.makedirs(output_dir, exist_ok=True) os.makedirs(dl_audio_dir, exist_ok=True) os.makedirs(tts_audio_dir, exist_ok=True) os.environ["TEMP"] = main_tmp_dir # Set for any underlying libraries # --- Model Loading (Cached for Performance) --- @gr.cache() def load_hubert_model(): """Loads the Hubert model and caches it.""" print("Loading Hubert model...") models, _, _ = checkpoint_utils.load_model_ensemble_and_task([HUBERT_PATH], suffix="") hubert_model = models[0] hubert_model = hubert_model.to(config.device) hubert_model = hubert_model.half() if config.is_half else hubert_model.float() hubert_model.eval() print("Hubert model loaded.") return hubert_model hubert_model = load_hubert_model() # --- Utility Functions --- def get_models_and_indices(): """Scans the weights folders and returns lists of available models and indices.""" model_files = [f for f in os.listdir(WEIGHT_ROOT) if f.endswith(".pth")] index_files = [os.path.join(INDEX_ROOT, f) for f in os.listdir(INDEX_ROOT) if f.endswith('.index') and "trained" not in f] return sorted(model_files), sorted(index_files) def get_edge_tts_voices(): """Fetches the list of available voices for Edge-TTS.""" try: tts_voice_list = asyncio.run(edge_tts.list_voices()) return [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] except Exception as e: print(f"Error fetching TTS voices: {e}. Returning a default list.") return ["en-US-AnaNeural-Female", "en-US-AriaNeural-Female", "en-GB-SoniaNeural-Female"] # --- Core Logic (Updated with correct paths) --- def vc_single(sid, input_audio_tuple, f0_up_key, f0_method, file_index, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, f0_file, loaded_model): if not input_audio_tuple: return "You need to upload an audio file.", None if not loaded_model or loaded_model["sid"] != sid: return "Model not loaded. Please select a model from the dropdown.", None net_g, tgt_sr, vc, version, if_f0 = loaded_model["model"], loaded_model["tgt_sr"], loaded_model["vc"], loaded_model["version"], loaded_model["if_f0"] try: sampling_rate, audio_data = input_audio_tuple audio_data = (audio_data / np.iinfo(audio_data.dtype).max).astype(np.float32) if len(audio_data.shape) > 1: audio_data = librosa.to_mono(audio_data.transpose(1, 0)) if sampling_rate != 16000: audio_data = librosa.resample(audio=audio_data, orig_sr=sampling_rate, target_sr=16000) times = [0, 0, 0] audio_opt = vc.pipeline(hubert_model, net_g, sid, audio_data, "dummy_path", times, int(f0_up_key), f0_method, file_index, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, f0_file=f0_file) final_sr = resample_sr if resample_sr >= 16000 else tgt_sr index_info = f"Using index: {os.path.basename(file_index)}" if file_index and os.path.exists(file_index) else "Index not used." info = f"Success. {index_info}\nTime: npy:{times[0]:.2f}s, f0:{times[1]:.2f}s, infer:{times[2]:.2f}s" return info, (final_sr, audio_opt) except Exception: return traceback.format_exc(), None def load_selected_model(sid, protect_val): if not sid: return None, gr.update(maximum=2333, visible=False), gr.update(visible=True), gr.update(value=""), gr.update(value="#
No model selected") print(f"Loading model: {sid}") try: cpt = torch.load(os.path.join(WEIGHT_ROOT, sid), map_location="cpu") tgt_sr, n_spk = cpt["config"][-1], cpt["weight"]["emb_g.weight"].shape[0] cpt["config"][-3] = n_spk if_f0, version = cpt.get("f0", 1), cpt.get("version", "v1") synth_class = {"v1": {1: SynthesizerTrnMs256NSFsid, 0: SynthesizerTrnMs256NSFsid_nono}, "v2": {1: SynthesizerTrnMs768NSFsid, 0: SynthesizerTrnMs768NSFsid_nono}}[version][if_f0] net_g = synth_class(*cpt["config"], is_half=config.is_half) del net_g.enc_q net_g.load_state_dict(cpt["weight"], strict=False) net_g.eval().to(config.device) net_g = net_g.half() if config.is_half else net_g.float() vc = VC(tgt_sr, config) loaded_model_state = {"sid": sid, "model": net_g, "tgt_sr": tgt_sr, "vc": vc, "version": version, "if_f0": if_f0, "n_spk": n_spk} model_name_no_ext, (_, index_files) = os.path.splitext(sid)[0], get_models_and_indices() best_index = next((index_file for index_file in index_files if model_name_no_ext in os.path.basename(index_file)), "") return loaded_model_state, gr.update(maximum=n_spk - 1, visible=True), gr.update(visible=(if_f0 != 0), value=protect_val), gr.update(value=best_index), gr.update(value=f'##
✅ Loaded: {model_name_no_ext}\n###
RVC {version} Model') except Exception: return None, gr.update(visible=False), gr.update(visible=True), gr.update(value=""), gr.update(value=f"#
⚠️ Error loading {sid}") def run_tts(tts_text, tts_voice): if not tts_text or not tts_voice: raise gr.Error("TTS text and voice are required.") output_file = os.path.join(tts_audio_dir, "tts_output.mp3") try: asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(output_file)) return "TTS audio generated.", output_file except Exception as e: return f"TTS failed: {e}", None def run_youtube_dl(url): if not url: raise gr.Error("URL is required.") output_path = os.path.join(dl_audio_dir, "audio.wav") ydl_opts = {'noplaylist': True, 'format': 'bestaudio/best', 'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav'}], "outtmpl": os.path.join(dl_audio_dir, "audio"), 'quiet': True} try: with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([url]) return "Download complete.", output_path except Exception as e: return f"Download failed: {e}", None def run_demucs(audio_path, model="htdemucs_ft"): if not audio_path or not os.path.exists(audio_path): raise gr.Error("Input audio for splitting not found.") command = f"demucs --two-stems=vocals -n {model} \"{audio_path}\" -o \"{output_dir}\"" print(f"Running command: {command}") try: subprocess.run(command.split(), check=True, capture_output=True, text=True) input_filename = os.path.splitext(os.path.basename(audio_path))[0] vocal_path = os.path.join(output_dir, model, input_filename, "vocals.wav") inst_path = os.path.join(output_dir, model, input_filename, "no_vocals.wav") if os.path.exists(vocal_path): return "Splitting complete.", vocal_path, inst_path else: return "Splitting failed: vocal file not found.", None, None except subprocess.CalledProcessError as e: error_message = f"Demucs failed: {e.stderr}" return error_message, None, None def refresh_model_list_ui(): models, indices = get_models_and_indices() return gr.update(choices=models), gr.update(choices=indices) # --- Gradio UI Layout --- initial_models, initial_indices = get_models_and_indices() tts_voices = get_edge_tts_voices() with gr.Blocks(theme=gr.themes.Soft(primary_hue="rose", secondary_hue="pink")) as demo: gr.Markdown("# 🌺 Modernized RVC Voice Conversion 🌺") loaded_model_state = gr.State(value=None) with gr.Row(): sid = gr.Dropdown(label="1. Select Voice Model (.pth)", choices=initial_models) refresh_button = gr.Button("🔄 Refresh", variant="secondary") selected_model_info = gr.Markdown("#
No model selected", elem_id="model-info") with gr.Tabs(): with gr.TabItem("🎙️ Main Inference"): with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Input Audio"); input_audio_type = gr.Radio(["Upload", "Microphone", "TTS", "YouTube"], value="Upload", label="Input Source") audio_in = gr.Audio(label="Upload or Record Audio", type="filepath", sources=["upload", "microphone"], visible=True) tts_text_in, tts_voice_in, tts_gen_button = gr.Textbox(label="TTS Text", lines=3, visible=False), gr.Dropdown(label="TTS Voice", choices=tts_voices, value=tts_voices[0], visible=False), gr.Button("Generate TTS Audio", variant="primary", visible=False) yt_url_in, yt_dl_button = gr.Textbox(label="YouTube URL", visible=False), gr.Button("Download from YouTube", variant="primary", visible=False) gr.Markdown("### (Optional) Vocal Separation"); run_demucs_button = gr.Button("Separate Vocals from Input", variant="secondary") demucs_output_vocals, demucs_output_inst, demucs_status = gr.Audio(label="Separated Vocals (for conversion)", type="filepath"), gr.Audio(label="Separated Instrumentals", type="filepath"), gr.Textbox(label="Splitter Status", interactive=False) gr.Markdown("_Use the 'Separated Vocals' as input for the best results._") with gr.Column(scale=1): gr.Markdown("### Inference Settings"); spk_item = gr.Slider(minimum=0, maximum=2333, step=1, label="Speaker ID", value=0, visible=False, interactive=True) vc_transform0 = gr.Number(label="Transpose (semitones)", value=0) f0method0 = gr.Radio(label="Pitch Extraction Algorithm", choices=["pm", "harvest", "crepe", "rmvpe"] if os.path.exists(RMVPE_PATH) else ["pm", "harvest", "crepe"], value="rmvpe" if os.path.exists(RMVPE_PATH) else "pm", interactive=True) file_index, index_rate0, filter_radius0 = gr.Dropdown(label="Feature Index File (.index)", choices=initial_indices, interactive=True), gr.Slider(minimum=0, maximum=1, label="Feature Retrieval Ratio", value=0.7, interactive=True), gr.Slider(minimum=0, maximum=7, label="Median Filtering Radius", value=3, step=1, interactive=True) resample_sr0, rms_mix_rate0, protect0 = gr.Slider(minimum=0, maximum=48000, label="Output Resampling", value=0, step=1, interactive=True), gr.Slider(minimum=0, maximum=1, label="Volume Envelope Mix Ratio", value=1, interactive=True), gr.Slider(minimum=0, maximum=0.5, label="Voice Protection", value=0.33, step=0.01, interactive=True) f0_file0 = gr.File(label="Optional F0 Curve File (.txt)", file_count="single") with gr.Column(scale=1): gr.Markdown("### Output"); convert_button = gr.Button("✨ Convert", variant="primary") vc_log, vc_output = gr.Textbox(label="Output Information", interactive=False), gr.Audio(label="Converted Audio", interactive=False) with gr.TabItem("📚 Add New Models"): gr.Markdown("## How to Add New Models\n1. Go to the 'Files' tab of this Space.\n2. Navigate to the `weights` folder.\n3. Click 'Upload file' to add your `.pth` model file.\n4. Navigate to `weights/index` to upload your `.index` file.\n5. Come back here and click '🔄 Refresh'.") sid.change(load_selected_model, [sid, protect0], [loaded_model_state, spk_item, protect0, file_index, selected_model_info]) refresh_button.click(refresh_model_list_ui, None, [sid, file_index]) convert_button.click(vc_single, [spk_item, demucs_output_vocals, vc_transform0, f0method0, file_index, index_rate0, filter_radius0, resample_sr0, rms_mix_rate0, protect0, f0_file0, loaded_model_state], [vc_log, vc_output]) def update_input_visibility(c): return {audio_in: gr.update(visible=c in ["Upload", "Microphone"]), tts_text_in: gr.update(visible=c=="TTS"), tts_voice_in: gr.update(visible=c=="TTS"), tts_gen_button: gr.update(visible=c=="TTS"), yt_url_in: gr.update(visible=c=="YouTube"), yt_dl_button: gr.update(visible=c=="YouTube")} input_audio_type.change(update_input_visibility, input_audio_type, [audio_in, tts_text_in, tts_voice_in, tts_gen_button, yt_url_in, yt_dl_button]) tts_gen_button.click(run_tts, [tts_text_in, tts_voice_in], [demucs_status, audio_in]) yt_dl_button.click(run_youtube_dl, [yt_url_in], [demucs_status, audio_in]) run_demucs_button.click(run_demucs, [audio_in], [demucs_status, demucs_output_vocals, demucs_output_inst]) demo.queue(max_size=20).launch()