File size: 1,836 Bytes
17f26fa
dca8735
18bff0d
 
dca8735
18bff0d
17f26fa
 
 
 
 
 
 
dca8735
17f26fa
dca8735
 
 
 
 
 
 
 
17f26fa
dca8735
 
17f26fa
dca8735
 
 
17f26fa
dca8735
17f26fa
dca8735
 
17f26fa
dca8735
17f26fa
dca8735
 
 
 
 
 
18bff0d
 
 
dca8735
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import gradio as gr

model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    device_map="auto"
)

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

def generate_response(message, history, system_prompt, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_prompt}]
    for user_msg, bot_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if bot_msg:
            messages.append({"role": "assistant", "content": bot_msg})
    messages.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
    outputs = model.generate(
        input_ids=input_ids,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        do_sample=True,
        streamer=streamer
    )
    output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return output_text.split(system_prompt)[-1].strip()

chat = gr.ChatInterface(
    fn=generate_response,
    additional_inputs=[
        gr.Textbox(label="System Prompt", value="Eres una mentora empática y reflexiva, especializada en acompañar a empleados en su camino hacia el bienestar laboral."),
        gr.Slider(label="Max tokens", minimum=64, maximum=1024, value=512),
        gr.Slider(label="Temperature", minimum=0.1, maximum=1.5, value=0.7),
        gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, value=0.95),
    ],
)

if __name__ == "__main__":
    chat.launch()