import gradio as gr from transformers import AutoModelForImageClassification, AutoImageProcessor, pipeline # Carregar o modelo e o processador de imagens model = AutoModelForImageClassification.from_pretrained("mestrevh/computer-vision-beans", use_safetensors=True) image_processor = AutoImageProcessor.from_pretrained("mestrevh/computer-vision-beans") # Criar o pipeline classifier = pipeline("image-classification", model=model, feature_extractor=image_processor) # Função de classificação def predict_image(image): # A saída do classifier é uma lista de dicionários, pegar o label e a confiança result = classifier(image) label = result[0]['label'] confidence = result[0]['score'] return f"Class: {label}, Confidence: {confidence:.2f}" # Interface Gradio interface = gr.Interface(fn=predict_image, inputs=gr.Image(type="pil"), outputs="text", live=True) interface.launch()