""" app.py – Enterprise SQL Agent (Gradio + smolagents + MCP) HubSpot Integration Only """ import os, pathlib, json, pprint, gradio as gr from mcp import StdioServerParameters from smolagents import MCPClient, CodeAgent from smolagents.models import LiteLLMModel, InferenceClientModel # ───────────────────────── 1. Choose base LLM ────────────────────────── OPENAI_KEY = os.getenv("OPENAI_API_KEY") OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o") GEMINI_KEY = os.getenv("GOOGLE_API_KEY") GEM_MODEL = os.getenv("GOOGLE_MODEL", "gemini-pro") HF_MODEL_ID = os.getenv("HF_MODEL_ID", "microsoft/Phi-3-mini-4k-instruct") HF_TOKEN = os.getenv("HF_API_TOKEN") if OPENAI_KEY: BASE_MODEL = LiteLLMModel(model_id=f"openai/{OPENAI_MODEL}", api_key=OPENAI_KEY) ACTIVE = f"OpenAI · {OPENAI_MODEL}" elif GEMINI_KEY: BASE_MODEL = LiteLLMModel(model_id=f"google/{GEM_MODEL}", api_key=GEMINI_KEY) ACTIVE = f"Gemini · {GEM_MODEL}" else: BASE_MODEL = InferenceClientModel(model_id=HF_MODEL_ID, hf_api_token=HF_TOKEN, timeout=90) ACTIVE = f"Hugging Face · {HF_MODEL_ID}" # ───────────────────────── 2. MCP server path ────────────────────────── SERVER_PATH = pathlib.Path(__file__).with_name("mcp_server.py") # ───────────────────────── 3. Chat callback ──────────────────────────── def respond(message: str, history: list): """Prompt → CodeAgent → MCP tools → string reply.""" params = StdioServerParameters(command="python", args=[str(SERVER_PATH)]) try: with MCPClient(params) as tools: answer = CodeAgent(tools=tools, model=BASE_MODEL).run(message) except Exception as e: answer = f"Error while querying tools: {e}" # ensure plain-text output if not isinstance(answer, str): try: answer = json.dumps(answer, indent=2, ensure_ascii=False) except Exception: answer = pprint.pformat(answer, width=100) history += [ {"role": "user", "content": message}, {"role": "assistant", "content": answer}, ] return history, history # ───────────────────────── 4. Gradio UI ──────────────────────────────── with gr.Blocks(title="Enterprise SQL Agent") as demo: state = gr.State([]) gr.Markdown("## 🏢 Enterprise SQL Agent — query your data with natural language") chat = gr.Chatbot(type="messages", label="Conversation") box = gr.Textbox( placeholder="e.g. Who are my inactive Northeast customers?", show_label=False, ) box.submit(respond, [box, state], [chat, state]) with gr.Accordion("Example prompts", open=False): gr.Markdown( "* Who are my **Northeast** customers with no orders in 6 months?\n" "* List customers sorted by **LastOrderDate**.\n" "* Draft re-engagement emails for inactive accounts." ) gr.Markdown(f"_Powered by MCP · smolagents · Gradio • Active model → **{ACTIVE}**_") if __name__ == "__main__": demo.launch()