Update core/visual_engine.py
Browse files- core/visual_engine.py +448 -194
core/visual_engine.py
CHANGED
@@ -1,188 +1,211 @@
|
|
1 |
# core/visual_engine.py
|
2 |
from PIL import Image, ImageDraw, ImageFont, ImageOps
|
3 |
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
|
4 |
-
# This is applied at module load time.
|
5 |
-
# Attempting to make MoviePy's internal calls to Image.ANTIALIAS work with Pillow 10+
|
6 |
try:
|
7 |
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
|
8 |
-
if not hasattr(Image, 'ANTIALIAS'):
|
9 |
-
|
10 |
-
|
11 |
-
elif hasattr(Image, '
|
12 |
-
|
13 |
-
|
14 |
-
print("INFO: Monkey-patched PIL.Image.ANTIALIAS with Image.LANCZOS for MoviePy compatibility.")
|
15 |
-
else:
|
16 |
-
# This case means Pillow is too old, or an unexpected version.
|
17 |
-
# If ANTIALIAS is already present, no action needed.
|
18 |
-
if not hasattr(Image, 'ANTIALIAS'):
|
19 |
-
print("WARNING: Pillow version does not have common Resampling attributes or ANTIALIAS. Video effects might fail if MoviePy relies on ANTIALIAS.")
|
20 |
-
except AttributeError:
|
21 |
-
print("WARNING: Could not perform ANTIALIAS monkey-patch due to AttributeError (Image module might be incomplete).")
|
22 |
-
except Exception as e_mp:
|
23 |
-
print(f"WARNING: An unexpected error occurred during ANTIALIAS monkey-patch: {e_mp}")
|
24 |
# --- END MONKEY PATCH ---
|
25 |
|
26 |
-
from moviepy.editor import (ImageClip, concatenate_videoclips, TextClip,
|
27 |
CompositeVideoClip, AudioFileClip)
|
28 |
-
import moviepy.video.fx.all as vfx
|
29 |
import numpy as np
|
30 |
import os
|
31 |
import openai
|
32 |
import requests
|
33 |
import io
|
34 |
import time
|
35 |
-
import random
|
36 |
-
import subprocess
|
37 |
import logging
|
38 |
|
39 |
logger = logging.getLogger(__name__)
|
40 |
-
logger.setLevel(logging.INFO)
|
41 |
|
|
|
42 |
ELEVENLABS_CLIENT_IMPORTED = False
|
43 |
-
ElevenLabsAPIClient = None
|
44 |
-
Voice = None
|
45 |
-
VoiceSettings = None
|
46 |
try:
|
47 |
-
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
|
48 |
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
|
49 |
-
ElevenLabsAPIClient = ImportedElevenLabsClient
|
50 |
Voice = ImportedVoice
|
51 |
VoiceSettings = ImportedVoiceSettings
|
52 |
ELEVENLABS_CLIENT_IMPORTED = True
|
53 |
-
logger.info("
|
54 |
-
except
|
55 |
-
logger.warning(f"
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
class VisualEngine:
|
61 |
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
|
62 |
self.output_dir = output_dir
|
63 |
os.makedirs(self.output_dir, exist_ok=True)
|
64 |
-
|
65 |
-
self.font_filename = "arial.ttf"
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
self.video_overlay_font_color = 'white'
|
70 |
-
self.video_overlay_font = 'Liberation-Sans-Bold' #
|
71 |
|
72 |
try:
|
73 |
-
self.font = ImageFont.truetype(self.
|
74 |
-
logger.info(f"
|
|
|
75 |
except IOError:
|
76 |
-
logger.warning(
|
77 |
-
self.font = ImageFont.load_default()
|
78 |
-
self.font_size_pil = 10
|
79 |
|
80 |
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
|
81 |
-
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
|
82 |
-
self.video_frame_size = (1280, 720)
|
83 |
|
84 |
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
|
85 |
-
self.elevenlabs_client = None
|
86 |
self.elevenlabs_voice_id = default_elevenlabs_voice_id
|
87 |
-
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
|
88 |
-
self.elevenlabs_voice_settings = VoiceSettings(
|
89 |
-
|
90 |
-
style=0.15, use_speaker_boost=True
|
91 |
-
)
|
92 |
-
else:
|
93 |
-
self.elevenlabs_voice_settings = None
|
94 |
|
95 |
self.pexels_api_key = None; self.USE_PEXELS = False
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
logger.info("VisualEngine initialized.")
|
97 |
|
98 |
-
def set_openai_api_key(self,k):
|
99 |
self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
|
100 |
-
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled
|
101 |
|
102 |
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
|
103 |
self.elevenlabs_api_key=api_key
|
104 |
-
if voice_id_from_secret:
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
logger.info(f"ElevenLabs Client Ready (Using Voice ID: {self.elevenlabs_voice_id}).")
|
114 |
-
else:
|
115 |
-
self.USE_ELEVENLABS=False; logger.warning("ElevenLabs client is None after initialization attempt.")
|
116 |
-
except Exception as e:
|
117 |
-
logger.error(f"Error initializing ElevenLabs client: {e}. ElevenLabs Disabled.", exc_info=True);
|
118 |
-
self.USE_ELEVENLABS=False; self.elevenlabs_client = None
|
119 |
-
else:
|
120 |
-
self.USE_ELEVENLABS=False; self.elevenlabs_client = None
|
121 |
-
if not (ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient):
|
122 |
-
pass # Already logged at import time if client class itself failed to import
|
123 |
-
else: # Client class imported, but API key was not provided
|
124 |
-
logger.info("ElevenLabs API Key not provided. ElevenLabs Disabled.")
|
125 |
-
|
126 |
def set_pexels_api_key(self,k):
|
127 |
self.pexels_api_key=k; self.USE_PEXELS=bool(k)
|
128 |
-
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def _get_text_dimensions(self,text_content,font_obj):
|
131 |
-
|
|
|
132 |
try:
|
133 |
-
if hasattr(font_obj,'getbbox'):
|
134 |
bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
|
135 |
return w, h if h > 0 else self.font_size_pil
|
136 |
-
elif hasattr(font_obj,'getsize'):
|
137 |
w,h=font_obj.getsize(text_content)
|
138 |
return w, h if h > 0 else self.font_size_pil
|
139 |
-
else:
|
140 |
return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
|
141 |
except Exception as e:
|
142 |
logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}")
|
143 |
return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2) # Fallback
|
144 |
-
|
|
|
145 |
def _create_placeholder_image_content(self,text_description,filename,size=None):
|
|
|
146 |
if size is None: size = self.video_frame_size
|
147 |
img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
|
148 |
if not text_description: text_description="(Placeholder: No prompt text)"
|
149 |
words=text_description.split();current_line=""
|
150 |
for word in words:
|
151 |
-
test_line=current_line+word+" ";
|
152 |
if self._get_text_dimensions(test_line,self.font)[0] <= max_w: current_line=test_line
|
153 |
else:
|
154 |
-
if current_line: lines.append(current_line.strip());
|
155 |
current_line=word+" "
|
156 |
if current_line.strip(): lines.append(current_line.strip()) # Add last line
|
157 |
-
if not lines and text_description: lines.append(text_description[:max_w//
|
158 |
elif not lines: lines.append("(Placeholder Text Error)")
|
159 |
|
160 |
_,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
|
161 |
-
|
162 |
max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
|
163 |
if max_lines_to_display <=0: max_lines_to_display = 1 # Ensure at least one line can be attempted
|
164 |
|
165 |
-
|
|
|
166 |
|
167 |
for i in range(max_lines_to_display):
|
168 |
line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
|
169 |
d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
|
170 |
if i==6 and max_lines_to_display > 7: d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180));break
|
171 |
-
filepath=os.path.join(self.output_dir,filename);
|
172 |
try:img.save(filepath);return filepath
|
173 |
except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None
|
174 |
|
|
|
175 |
def _search_pexels_image(self, query, output_filename_base):
|
|
|
176 |
if not self.USE_PEXELS or not self.pexels_api_key: return None
|
177 |
headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"}
|
178 |
-
|
|
|
179 |
filepath = os.path.join(self.output_dir, pexels_filename)
|
180 |
try:
|
181 |
logger.info(f"Searching Pexels for: '{query}'"); effective_query = " ".join(query.split()[:5]); params["query"] = effective_query
|
182 |
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
|
183 |
response.raise_for_status(); data = response.json()
|
184 |
if data.get("photos") and len(data["photos"]) > 0:
|
185 |
-
photo_url = data["photos"][0]["src"]["large2x"]
|
186 |
image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
|
187 |
img_data = Image.open(io.BytesIO(image_response.content))
|
188 |
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
|
@@ -191,151 +214,382 @@ class VisualEngine:
|
|
191 |
except Exception as e: logger.error(f"Pexels search/download for query '{query}': {e}", exc_info=True)
|
192 |
return None
|
193 |
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
|
197 |
max_retries = 2
|
198 |
for attempt in range(max_retries):
|
199 |
try:
|
|
|
200 |
logger.info(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
|
201 |
-
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
|
202 |
response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
|
203 |
image_url = response.data[0].url; revised_prompt = getattr(response.data[0], 'revised_prompt', None)
|
204 |
if revised_prompt: logger.info(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
|
205 |
image_response = requests.get(image_url, timeout=120); image_response.raise_for_status()
|
206 |
-
img_data = Image.open(io.BytesIO(image_response.content));
|
207 |
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
|
208 |
-
img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
|
209 |
-
|
|
|
210 |
logger.warning(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s..."); time.sleep(5 * (attempt + 1))
|
211 |
if attempt == max_retries - 1: logger.error("Max retries for RateLimitError."); break
|
212 |
-
|
213 |
-
except openai.APIError as e: logger.error(f"OpenAI API Error: {e}"); break
|
214 |
except requests.exceptions.RequestException as e: logger.error(f"Requests Error (DALL-E download): {e}"); break
|
215 |
except Exception as e: logger.error(f"Generic error (DALL-E gen): {e}", exc_info=True); break
|
216 |
logger.warning("DALL-E generation failed. Trying Pexels fallback...")
|
|
|
|
|
|
|
217 |
pexels_query_text = scene_data.get('pexels_search_query_감독', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
|
218 |
-
pexels_path = self._search_pexels_image(pexels_query_text,
|
219 |
-
if pexels_path:
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
|
|
|
226 |
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
|
227 |
logger.info("ElevenLabs conditions not met (API key, client init, or text). Skipping audio.")
|
228 |
return None
|
229 |
-
|
230 |
audio_filepath = os.path.join(self.output_dir, output_filename)
|
231 |
try:
|
232 |
logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
|
233 |
-
|
234 |
-
|
235 |
if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
|
|
|
236 |
logger.info("Using elevenlabs_client.text_to_speech.stream()")
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
text=text_to_narrate,
|
239 |
-
|
240 |
-
|
241 |
-
# voice_settings=self.elevenlabs_voice_settings # Pass VoiceSettings object if supported by stream
|
242 |
)
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
voice_param = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings)
|
248 |
-
audio_data_iterator = self.elevenlabs_client.generate(
|
249 |
-
text=text_to_narrate, voice=voice_param, model="eleven_multilingual_v2")
|
250 |
else:
|
251 |
-
logger.error("No recognized audio generation method found on ElevenLabs client
|
252 |
return None
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
except AttributeError as ae:
|
260 |
-
logger.error(f"AttributeError with ElevenLabs client: {ae}. SDK method might be different.", exc_info=True)
|
261 |
except Exception as e:
|
262 |
logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
|
263 |
return None
|
264 |
|
265 |
-
def
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
273 |
try:
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
|
|
|
286 |
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
else: raise # Re-raise other AttributeErrors
|
297 |
-
except Exception as e_fx: logger.error(f"Error in vfx.resize for {img_path}: {e_fx}. Ken Burns disabled for this clip.")
|
298 |
-
|
299 |
-
if key_action:
|
300 |
-
txt_clip = TextClip(f"Scene {scene_num}\n{key_action}", fontsize=self.video_overlay_font_size,
|
301 |
-
color=self.video_overlay_font_color, font=self.video_overlay_font,
|
302 |
-
bg_color='rgba(10,10,20,0.8)', method='caption', align='West',
|
303 |
-
size=(self.video_frame_size[0]*0.9, None), kerning=-1, stroke_color='black', stroke_width=1.5
|
304 |
-
).set_duration(duration_per_image-1.0).set_start(0.5).set_position(('center',0.92),relative=True)
|
305 |
-
final_scene_clip = CompositeVideoClip([img_clip, txt_clip], size=self.video_frame_size, use_bgclip=True, bg_color=(0,0,0))
|
306 |
-
else: final_scene_clip = img_clip
|
307 |
-
processed_clips.append(final_scene_clip)
|
308 |
-
except Exception as e: logger.error(f"Creating video clip for {img_path}: {e}", exc_info=True)
|
309 |
-
|
310 |
-
if not processed_clips: logger.warning("No clips processed for video."); return None
|
311 |
-
|
312 |
-
transition = 0.75
|
313 |
try:
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
if overall_narration_path and os.path.exists(overall_narration_path):
|
319 |
try:
|
320 |
narration_audio_clip = AudioFileClip(overall_narration_path)
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
final_video_clip_obj = final_video_clip_obj.subclip(0, narration_audio_clip.duration)
|
326 |
|
327 |
-
|
328 |
-
|
|
|
|
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
|
|
|
|
|
337 |
finally:
|
338 |
-
for
|
339 |
-
if hasattr(
|
340 |
if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
|
341 |
-
if
|
|
|
1 |
# core/visual_engine.py
|
2 |
from PIL import Image, ImageDraw, ImageFont, ImageOps
|
3 |
# --- MONKEY PATCH FOR Image.ANTIALIAS ---
|
|
|
|
|
4 |
try:
|
5 |
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
|
6 |
+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
|
7 |
+
elif hasattr(Image, 'LANCZOS'): # Pillow 8
|
8 |
+
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
|
9 |
+
elif not hasattr(Image, 'ANTIALIAS'):
|
10 |
+
print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. Video effects might fail.")
|
11 |
+
except Exception as e_mp: print(f"WARNING: ANTIALIAS monkey-patch error: {e_mp}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# --- END MONKEY PATCH ---
|
13 |
|
14 |
+
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
|
15 |
CompositeVideoClip, AudioFileClip)
|
16 |
+
import moviepy.video.fx.all as vfx
|
17 |
import numpy as np
|
18 |
import os
|
19 |
import openai
|
20 |
import requests
|
21 |
import io
|
22 |
import time
|
23 |
+
import random
|
|
|
24 |
import logging
|
25 |
|
26 |
logger = logging.getLogger(__name__)
|
27 |
+
logger.setLevel(logging.INFO)
|
28 |
|
29 |
+
# --- ElevenLabs Client Import ---
|
30 |
ELEVENLABS_CLIENT_IMPORTED = False
|
31 |
+
ElevenLabsAPIClient = None
|
32 |
+
Voice = None
|
33 |
+
VoiceSettings = None
|
34 |
try:
|
35 |
+
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
|
36 |
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
|
37 |
+
ElevenLabsAPIClient = ImportedElevenLabsClient
|
38 |
Voice = ImportedVoice
|
39 |
VoiceSettings = ImportedVoiceSettings
|
40 |
ELEVENLABS_CLIENT_IMPORTED = True
|
41 |
+
logger.info("ElevenLabs client components imported.")
|
42 |
+
except Exception as e_eleven:
|
43 |
+
logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio generation disabled.")
|
44 |
+
|
45 |
+
# --- RunwayML Client Import (Placeholder) ---
|
46 |
+
RUNWAYML_SDK_IMPORTED = False
|
47 |
+
RunwayMLClient = None # Placeholder for the actual RunwayML client class
|
48 |
+
try:
|
49 |
+
# This is a hypothetical import. Replace with actual RunwayML SDK import if available.
|
50 |
+
# Example: from runwayml import RunwayClient as ImportedRunwayMLClient
|
51 |
+
# RunwayMLClient = ImportedRunwayMLClient
|
52 |
+
# RUNWAYML_SDK_IMPORTED = True
|
53 |
+
# logger.info("RunwayML SDK (placeholder) imported.")
|
54 |
+
logger.info("RunwayML SDK import is a placeholder. Actual SDK needed for Runway features.")
|
55 |
+
except ImportError:
|
56 |
+
logger.warning("RunwayML SDK (placeholder) not found. RunwayML video generation will be disabled.")
|
57 |
+
except Exception as e_runway_sdk:
|
58 |
+
logger.warning(f"Error importing RunwayML SDK (placeholder): {e_runway_sdk}. RunwayML features disabled.")
|
59 |
|
60 |
|
61 |
class VisualEngine:
|
62 |
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
|
63 |
self.output_dir = output_dir
|
64 |
os.makedirs(self.output_dir, exist_ok=True)
|
65 |
+
|
66 |
+
self.font_filename = "arial.ttf"
|
67 |
+
font_paths_to_try = [
|
68 |
+
self.font_filename,
|
69 |
+
f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
|
70 |
+
f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
|
71 |
+
f"/System/Library/Fonts/Supplemental/Arial.ttf",
|
72 |
+
f"C:/Windows/Fonts/arial.ttf",
|
73 |
+
f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
|
74 |
+
]
|
75 |
+
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
|
76 |
+
self.font_size_pil = 20
|
77 |
+
self.video_overlay_font_size = 30
|
78 |
self.video_overlay_font_color = 'white'
|
79 |
+
self.video_overlay_font = 'Liberation-Sans-Bold' # For MoviePy TextClip
|
80 |
|
81 |
try:
|
82 |
+
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
|
83 |
+
if self.font_path_pil: logger.info(f"Pillow font loaded: {self.font_path_pil}.")
|
84 |
+
else: logger.warning("Using default Pillow font."); self.font_size_pil = 10
|
85 |
except IOError:
|
86 |
+
logger.warning("Pillow font error. Using default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
|
|
|
|
|
87 |
|
88 |
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
|
89 |
+
self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
|
90 |
+
self.video_frame_size = (1280, 720)
|
91 |
|
92 |
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
|
93 |
+
self.elevenlabs_client = None
|
94 |
self.elevenlabs_voice_id = default_elevenlabs_voice_id
|
95 |
+
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
|
96 |
+
self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
|
97 |
+
else: self.elevenlabs_voice_settings = None
|
|
|
|
|
|
|
|
|
98 |
|
99 |
self.pexels_api_key = None; self.USE_PEXELS = False
|
100 |
+
|
101 |
+
# <<< RUNWAYML START >>>
|
102 |
+
self.runway_api_key = None; self.USE_RUNWAYML = False
|
103 |
+
self.runway_client = None # Placeholder for the actual RunwayML client instance
|
104 |
+
# <<< RUNWAYML END >>>
|
105 |
+
|
106 |
logger.info("VisualEngine initialized.")
|
107 |
|
108 |
+
def set_openai_api_key(self,k):
|
109 |
self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
|
110 |
+
logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
|
111 |
|
112 |
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
|
113 |
self.elevenlabs_api_key=api_key
|
114 |
+
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
|
115 |
+
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
|
116 |
+
try:
|
117 |
+
self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
|
118 |
+
self.USE_ELEVENLABS=bool(self.elevenlabs_client)
|
119 |
+
logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
|
120 |
+
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
|
121 |
+
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")
|
122 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
def set_pexels_api_key(self,k):
|
124 |
self.pexels_api_key=k; self.USE_PEXELS=bool(k)
|
125 |
+
logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
|
126 |
+
|
127 |
+
# <<< RUNWAYML START >>>
|
128 |
+
def set_runway_api_key(self, k):
|
129 |
+
self.runway_api_key = k
|
130 |
+
if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient: # Assuming RunwayMLClient is the SDK's client class
|
131 |
+
try:
|
132 |
+
# self.runway_client = RunwayMLClient(api_key=k) # Actual initialization
|
133 |
+
self.USE_RUNWAYML = True # Assume success for placeholder
|
134 |
+
logger.info(f"RunwayML Client (Placeholder) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
|
135 |
+
except Exception as e:
|
136 |
+
logger.error(f"RunwayML client (Placeholder) init error: {e}. Disabled.", exc_info=True)
|
137 |
+
self.USE_RUNWAYML = False
|
138 |
+
elif k and not (RUNWAYML_SDK_IMPORTED and RunwayMLClient):
|
139 |
+
self.USE_RUNWAYML = True # Allow use with direct HTTP requests if SDK isn't used/available
|
140 |
+
logger.info("RunwayML API Key set. SDK (Placeholder) not imported/used. Direct API calls would be needed.")
|
141 |
+
else:
|
142 |
+
self.USE_RUNWAYML = False
|
143 |
+
logger.info("RunwayML Disabled (no API key or SDK issue).")
|
144 |
+
# <<< RUNWAYML END >>>
|
145 |
+
|
146 |
def _get_text_dimensions(self,text_content,font_obj):
|
147 |
+
# ... (no changes from your previous version)
|
148 |
+
if not text_content: return 0,self.font_size_pil
|
149 |
try:
|
150 |
+
if hasattr(font_obj,'getbbox'): # Pillow 8.0.0+
|
151 |
bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
|
152 |
return w, h if h > 0 else self.font_size_pil
|
153 |
+
elif hasattr(font_obj,'getsize'): # Older Pillow
|
154 |
w,h=font_obj.getsize(text_content)
|
155 |
return w, h if h > 0 else self.font_size_pil
|
156 |
+
else: # Should not happen with standard ImageFont objects
|
157 |
return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
|
158 |
except Exception as e:
|
159 |
logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}")
|
160 |
return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2) # Fallback
|
161 |
+
|
162 |
+
|
163 |
def _create_placeholder_image_content(self,text_description,filename,size=None):
|
164 |
+
# ... (no changes from your previous version, ensure filename includes extension e.g. .png)
|
165 |
if size is None: size = self.video_frame_size
|
166 |
img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
|
167 |
if not text_description: text_description="(Placeholder: No prompt text)"
|
168 |
words=text_description.split();current_line=""
|
169 |
for word in words:
|
170 |
+
test_line=current_line+word+" ";
|
171 |
if self._get_text_dimensions(test_line,self.font)[0] <= max_w: current_line=test_line
|
172 |
else:
|
173 |
+
if current_line: lines.append(current_line.strip());
|
174 |
current_line=word+" "
|
175 |
if current_line.strip(): lines.append(current_line.strip()) # Add last line
|
176 |
+
if not lines and text_description: lines.append(text_description[:int(max_w//(self.font_size_pil*0.6 +1))]+"..." if text_description else "(Text too long)") # Handle single very long word
|
177 |
elif not lines: lines.append("(Placeholder Text Error)")
|
178 |
|
179 |
_,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
|
180 |
+
|
181 |
max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
|
182 |
if max_lines_to_display <=0: max_lines_to_display = 1 # Ensure at least one line can be attempted
|
183 |
|
184 |
+
y_text_start = padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
|
185 |
+
y_text = y_text_start
|
186 |
|
187 |
for i in range(max_lines_to_display):
|
188 |
line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
|
189 |
d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
|
190 |
if i==6 and max_lines_to_display > 7: d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180));break
|
191 |
+
filepath=os.path.join(self.output_dir,filename);
|
192 |
try:img.save(filepath);return filepath
|
193 |
except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None
|
194 |
|
195 |
+
|
196 |
def _search_pexels_image(self, query, output_filename_base):
|
197 |
+
# ... (no changes from your previous version, ensure output_filename_base has .png for consistency, it will be replaced)
|
198 |
if not self.USE_PEXELS or not self.pexels_api_key: return None
|
199 |
headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"}
|
200 |
+
# Use a more unique filename for Pexels images to avoid clashes if query is similar
|
201 |
+
pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
|
202 |
filepath = os.path.join(self.output_dir, pexels_filename)
|
203 |
try:
|
204 |
logger.info(f"Searching Pexels for: '{query}'"); effective_query = " ".join(query.split()[:5]); params["query"] = effective_query
|
205 |
response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
|
206 |
response.raise_for_status(); data = response.json()
|
207 |
if data.get("photos") and len(data["photos"]) > 0:
|
208 |
+
photo_url = data["photos"][0]["src"]["large2x"] # Using large2x for better quality
|
209 |
image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
|
210 |
img_data = Image.open(io.BytesIO(image_response.content))
|
211 |
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
|
|
|
214 |
except Exception as e: logger.error(f"Pexels search/download for query '{query}': {e}", exc_info=True)
|
215 |
return None
|
216 |
|
217 |
+
|
218 |
+
# <<< RUNWAYML START >>>
|
219 |
+
def _generate_video_clip_with_runwayml(self, prompt_text, scene_identifier_filename_base, target_duration_seconds=4, input_image_path=None):
|
220 |
+
"""
|
221 |
+
Placeholder for generating a video clip using RunwayML.
|
222 |
+
This needs to be implemented with the actual RunwayML SDK or API.
|
223 |
+
"""
|
224 |
+
if not self.USE_RUNWAYML or not self.runway_api_key:
|
225 |
+
logger.warning("RunwayML not enabled or API key missing. Cannot generate video clip.")
|
226 |
+
return None
|
227 |
+
|
228 |
+
output_video_filename = scene_identifier_filename_base.replace(".png", ".mp4") # Ensure .mp4 extension
|
229 |
+
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
|
230 |
+
|
231 |
+
logger.info(f"Attempting RunwayML video generation for: {prompt_text[:100]}... (Target duration: {target_duration_seconds}s)")
|
232 |
+
logger.info(f"RunwayML Output (Placeholder): {output_video_filepath}")
|
233 |
+
|
234 |
+
# --- START ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
|
235 |
+
# This section is highly dependent on RunwayML's specific API/SDK.
|
236 |
+
# Example using a hypothetical SDK:
|
237 |
+
# try:
|
238 |
+
# if not self.runway_client:
|
239 |
+
# # self.runway_client = RunwayMLClient(api_key=self.runway_api_key) # Or however it's initialized
|
240 |
+
# logger.warning("RunwayML client not initialized (Placeholder).")
|
241 |
+
# # For placeholder, simulate creating a dummy video file
|
242 |
+
# return self._create_placeholder_video_content(prompt_text, output_video_filename, duration=target_duration_seconds)
|
243 |
+
|
244 |
+
|
245 |
+
# generation_params = {
|
246 |
+
# "text_prompt": prompt_text,
|
247 |
+
# "duration_seconds": target_duration_seconds,
|
248 |
+
# "width": self.video_frame_size[0], # Or Runway's supported sizes
|
249 |
+
# "height": self.video_frame_size[1],
|
250 |
+
# # Add other params like seed, motion scale, etc.
|
251 |
+
# }
|
252 |
+
# if input_image_path and os.path.exists(input_image_path):
|
253 |
+
# generation_params["input_image_path"] = input_image_path # For image-to-video
|
254 |
+
# logger.info(f"Using input image for RunwayML: {input_image_path}")
|
255 |
+
|
256 |
+
# task_id = self.runway_client.submit_video_generation_task(**generation_params) # Hypothetical
|
257 |
+
# logger.info(f"RunwayML task submitted: {task_id}. Polling for completion...")
|
258 |
+
|
259 |
+
# while True:
|
260 |
+
# status = self.runway_client.get_task_status(task_id) # Hypothetical
|
261 |
+
# if status == "completed":
|
262 |
+
# video_url = self.runway_client.get_video_url(task_id) # Hypothetical
|
263 |
+
# video_response = requests.get(video_url, stream=True, timeout=300)
|
264 |
+
# video_response.raise_for_status()
|
265 |
+
# with open(output_video_filepath, 'wb') as f:
|
266 |
+
# for chunk in video_response.iter_content(chunk_size=8192):
|
267 |
+
# f.write(chunk)
|
268 |
+
# logger.info(f"RunwayML video downloaded and saved: {output_video_filepath}")
|
269 |
+
# return output_video_filepath
|
270 |
+
# elif status in ["failed", "error"]:
|
271 |
+
# logger.error(f"RunwayML task {task_id} failed.")
|
272 |
+
# return None
|
273 |
+
# time.sleep(10) # Poll interval
|
274 |
+
|
275 |
+
# except Exception as e:
|
276 |
+
# logger.error(f"Error during RunwayML video generation: {e}", exc_info=True)
|
277 |
+
# return None
|
278 |
+
# --- END ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
|
279 |
+
|
280 |
+
# For now, as a placeholder, create a dummy MP4 file with MoviePy
|
281 |
+
# This allows the rest of the pipeline to be tested.
|
282 |
+
# **REPLACE THIS WITH ACTUAL RUNWAYML CALLS**
|
283 |
+
logger.warning("Using PLACEHOLDER video generation for RunwayML.")
|
284 |
+
return self._create_placeholder_video_content(f"[RunwayML Placeholder] {prompt_text}", output_video_filename, duration=target_duration_seconds)
|
285 |
+
|
286 |
+
def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
|
287 |
+
"""Creates a short video clip with text as a placeholder."""
|
288 |
+
if size is None: size = self.video_frame_size
|
289 |
+
filepath = os.path.join(self.output_dir, filename)
|
290 |
+
|
291 |
+
# Create a simple text clip
|
292 |
+
txt_clip = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font,
|
293 |
+
bg_color='black', size=size, method='caption').set_duration(duration)
|
294 |
+
|
295 |
+
try:
|
296 |
+
txt_clip.write_videofile(filepath, fps=24, codec='libx264', preset='ultrafast', logger=None)
|
297 |
+
logger.info(f"Placeholder video saved: {filepath}")
|
298 |
+
return filepath
|
299 |
+
except Exception as e:
|
300 |
+
logger.error(f"Failed to create placeholder video {filepath}: {e}", exc_info=True)
|
301 |
+
return None
|
302 |
+
finally:
|
303 |
+
if hasattr(txt_clip, 'close'): txt_clip.close()
|
304 |
+
# <<< RUNWAYML END >>>
|
305 |
+
|
306 |
+
|
307 |
+
def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
|
308 |
+
generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
|
309 |
+
"""
|
310 |
+
Generates either an image or a video clip for a scene.
|
311 |
+
Returns a dictionary: {'path': asset_path, 'type': 'image'/'video', 'error': bool}
|
312 |
+
"""
|
313 |
+
# Ensure scene_identifier_filename_base does not have an extension yet, or handle it
|
314 |
+
base_name, _ = os.path.splitext(scene_identifier_filename_base)
|
315 |
+
|
316 |
+
if generate_as_video_clip and self.USE_RUNWAYML:
|
317 |
+
logger.info(f"Attempting RunwayML video clip generation for {base_name}")
|
318 |
+
video_path = self._generate_video_clip_with_runwayml(
|
319 |
+
image_prompt_text, # Use DALL-E prompt also for Runway text-to-video
|
320 |
+
base_name, # Pass base name, function will add .mp4
|
321 |
+
target_duration_seconds=runway_target_duration,
|
322 |
+
input_image_path=input_image_for_runway
|
323 |
+
)
|
324 |
+
if video_path and os.path.exists(video_path):
|
325 |
+
return {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
|
326 |
+
else:
|
327 |
+
logger.warning(f"RunwayML video clip generation failed for {base_name}. Falling back to image.")
|
328 |
+
# Fall through to image generation
|
329 |
+
|
330 |
+
# Image Generation (DALL-E, Pexels, Placeholder)
|
331 |
+
# Ensure image filename has .png
|
332 |
+
image_filename_with_ext = base_name + ".png"
|
333 |
+
filepath = os.path.join(self.output_dir, image_filename_with_ext)
|
334 |
+
|
335 |
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
|
336 |
max_retries = 2
|
337 |
for attempt in range(max_retries):
|
338 |
try:
|
339 |
+
# ... (DALL-E generation logic - no changes from your previous version) ...
|
340 |
logger.info(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
|
341 |
+
client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
|
342 |
response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
|
343 |
image_url = response.data[0].url; revised_prompt = getattr(response.data[0], 'revised_prompt', None)
|
344 |
if revised_prompt: logger.info(f"DALL-E 3 revised_prompt: {revised_prompt[:100]}...")
|
345 |
image_response = requests.get(image_url, timeout=120); image_response.raise_for_status()
|
346 |
+
img_data = Image.open(io.BytesIO(image_response.content));
|
347 |
if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
|
348 |
+
img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
|
349 |
+
return {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': revised_prompt}
|
350 |
+
except openai.RateLimitError as e:
|
351 |
logger.warning(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s..."); time.sleep(5 * (attempt + 1))
|
352 |
if attempt == max_retries - 1: logger.error("Max retries for RateLimitError."); break
|
353 |
+
except openai.APIError as e: logger.error(f"OpenAI API Error: {e}"); break
|
|
|
354 |
except requests.exceptions.RequestException as e: logger.error(f"Requests Error (DALL-E download): {e}"); break
|
355 |
except Exception as e: logger.error(f"Generic error (DALL-E gen): {e}", exc_info=True); break
|
356 |
logger.warning("DALL-E generation failed. Trying Pexels fallback...")
|
357 |
+
|
358 |
+
# Pexels or Placeholder if DALL-E failed or disabled
|
359 |
+
if self.USE_PEXELS:
|
360 |
pexels_query_text = scene_data.get('pexels_search_query_감독', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
|
361 |
+
pexels_path = self._search_pexels_image(pexels_query_text, image_filename_with_ext) # Pass filename with extension
|
362 |
+
if pexels_path:
|
363 |
+
return {'path': pexels_path, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pexels_query_text}"}
|
364 |
+
logger.warning("Pexels also failed/disabled. Using placeholder image.")
|
365 |
+
|
366 |
+
placeholder_path = self._create_placeholder_image_content(
|
367 |
+
f"[AI/Pexels Failed] {image_prompt_text[:100]}...", image_filename_with_ext
|
368 |
+
)
|
369 |
+
if placeholder_path:
|
370 |
+
return {'path': placeholder_path, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text}
|
371 |
+
else:
|
372 |
+
return {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_prompt_text}
|
373 |
+
|
374 |
|
375 |
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
|
376 |
+
# ... (no changes from your previous version) ...
|
377 |
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
|
378 |
logger.info("ElevenLabs conditions not met (API key, client init, or text). Skipping audio.")
|
379 |
return None
|
380 |
+
|
381 |
audio_filepath = os.path.join(self.output_dir, output_filename)
|
382 |
try:
|
383 |
logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
|
384 |
+
|
385 |
+
audio_stream_method = None
|
386 |
if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
|
387 |
+
audio_stream_method = self.elevenlabs_client.text_to_speech.stream
|
388 |
logger.info("Using elevenlabs_client.text_to_speech.stream()")
|
389 |
+
elif hasattr(self.elevenlabs_client, 'generate_stream') : # Older SDK might have this
|
390 |
+
audio_stream_method = self.elevenlabs_client.generate_stream
|
391 |
+
logger.info("Using elevenlabs_client.generate_stream()")
|
392 |
+
elif hasattr(self.elevenlabs_client, 'generate'): # Fallback to non-streaming
|
393 |
+
logger.info("Using elevenlabs_client.generate() (non-streaming).")
|
394 |
+
# This one doesn't return a stream, it returns bytes directly
|
395 |
+
voice_param = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id)
|
396 |
+
audio_bytes = self.elevenlabs_client.generate(
|
397 |
text=text_to_narrate,
|
398 |
+
voice=voice_param,
|
399 |
+
model="eleven_multilingual_v2" # or other suitable model
|
|
|
400 |
)
|
401 |
+
with open(audio_filepath, "wb") as f:
|
402 |
+
f.write(audio_bytes)
|
403 |
+
logger.info(f"ElevenLabs audio (non-streamed) saved: {audio_filepath}")
|
404 |
+
return audio_filepath
|
|
|
|
|
|
|
405 |
else:
|
406 |
+
logger.error("No recognized audio generation method found on ElevenLabs client.")
|
407 |
return None
|
408 |
+
|
409 |
+
# If we have a streaming method
|
410 |
+
if audio_stream_method:
|
411 |
+
voice_param_for_stream = {"voice_id": str(self.elevenlabs_voice_id)}
|
412 |
+
# For Pydantic v1 style for elevenlabs sdk <1.0
|
413 |
+
# if self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'dict'):
|
414 |
+
# voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.dict()
|
415 |
+
# For Pydantic v2 style for elevenlabs skd >=1.0
|
416 |
+
if self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'model_dump'):
|
417 |
+
voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
|
418 |
+
elif self.elevenlabs_voice_settings : # If not a pydantic model, pass as is if supported
|
419 |
+
voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings
|
420 |
+
|
421 |
+
audio_data_iterator = audio_stream_method(
|
422 |
+
text=text_to_narrate,
|
423 |
+
model_id="eleven_multilingual_v2",
|
424 |
+
**voice_param_for_stream
|
425 |
+
)
|
426 |
+
with open(audio_filepath, "wb") as f:
|
427 |
+
for chunk in audio_data_iterator:
|
428 |
+
if chunk: f.write(chunk)
|
429 |
+
logger.info(f"ElevenLabs audio (streamed) saved: {audio_filepath}")
|
430 |
+
return audio_filepath
|
431 |
+
|
432 |
except AttributeError as ae:
|
433 |
+
logger.error(f"AttributeError with ElevenLabs client: {ae}. SDK method/params might be different.", exc_info=True)
|
434 |
except Exception as e:
|
435 |
logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
|
436 |
return None
|
437 |
|
438 |
+
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
|
439 |
+
"""
|
440 |
+
Assembles the final video from a list of assets (images or video clips).
|
441 |
+
Each item in asset_data_list should be a dict like:
|
442 |
+
{'path': 'path/to/asset', 'type': 'image'|'video', 'duration': desired_scene_duration_in_animatic,
|
443 |
+
'scene_num': num, 'key_action': 'text'}
|
444 |
+
"""
|
445 |
+
if not asset_data_list:
|
446 |
+
logger.warning("No asset data provided for animatic assembly.")
|
447 |
+
return None
|
448 |
+
|
449 |
+
processed_moviepy_clips = []
|
450 |
+
narration_audio_clip = None
|
451 |
+
final_composite_clip = None
|
452 |
+
total_video_duration_from_assets = sum(item.get('duration', 4.5) for item in asset_data_list)
|
453 |
+
logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}. Approx total duration: {total_video_duration_from_assets:.2f}s.")
|
454 |
+
|
455 |
+
for i, asset_info in enumerate(asset_data_list):
|
456 |
+
asset_path = asset_info.get('path')
|
457 |
+
asset_type = asset_info.get('type')
|
458 |
+
# This 'duration' is the desired display duration of THIS scene in the final animatic
|
459 |
+
target_scene_duration = asset_info.get('duration', 4.5) # Default if not specified
|
460 |
+
scene_num = asset_info.get('scene_num', i + 1)
|
461 |
+
key_action = asset_info.get('key_action', '')
|
462 |
|
463 |
+
if not (asset_path and os.path.exists(asset_path)):
|
464 |
+
logger.warning(f"Asset not found for Scene {scene_num}: {asset_path}. Skipping.")
|
465 |
+
continue
|
466 |
+
if target_scene_duration <= 0:
|
467 |
+
logger.warning(f"Scene {scene_num} has invalid duration ({target_scene_duration}s). Skipping.")
|
468 |
+
continue
|
469 |
+
|
470 |
+
current_clip = None
|
471 |
try:
|
472 |
+
if asset_type == 'image':
|
473 |
+
pil_img = Image.open(asset_path)
|
474 |
+
if pil_img.mode != 'RGB': pil_img = pil_img.convert('RGB')
|
475 |
+
img_copy = pil_img.copy()
|
476 |
+
resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else (Image.ANTIALIAS if hasattr(Image, 'ANTIALIAS') else Image.BILINEAR)
|
477 |
+
img_copy.thumbnail(self.video_frame_size, resample_filter)
|
478 |
+
canvas = Image.new('RGB', self.video_frame_size, (random.randint(0,10), random.randint(0,10), random.randint(0,10)))
|
479 |
+
xo, yo = (self.video_frame_size[0] - img_copy.width) // 2, (self.video_frame_size[1] - img_copy.height) // 2
|
480 |
+
canvas.paste(img_copy, (xo, yo))
|
481 |
+
frame_np = np.array(canvas)
|
482 |
+
current_clip_base = ImageClip(frame_np).set_duration(target_scene_duration)
|
483 |
+
|
484 |
+
# Ken Burns for ImageClips
|
485 |
+
try:
|
486 |
+
end_scale = random.uniform(1.03, 1.08)
|
487 |
+
current_clip = current_clip_base.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / target_scene_duration)).set_position('center')
|
488 |
+
except Exception as e_fx:
|
489 |
+
logger.error(f"Ken Burns error for image {asset_path}: {e_fx}. Using static image.")
|
490 |
+
current_clip = current_clip_base
|
491 |
+
|
492 |
+
elif asset_type == 'video':
|
493 |
+
source_video_clip = VideoFileClip(asset_path, target_resolution=(self.video_frame_size[1], self.video_frame_size[0]))
|
494 |
+
# Fit video into target_scene_duration:
|
495 |
+
# If source is shorter, it will play once. If longer, it will be cut.
|
496 |
+
# For more complex looping/speed adjustments, more logic is needed.
|
497 |
+
if source_video_clip.duration > target_scene_duration:
|
498 |
+
current_clip = source_video_clip.subclip(0, target_scene_duration)
|
499 |
+
elif source_video_clip.duration < target_scene_duration:
|
500 |
+
# Simple loop if significantly shorter, or just play once if close
|
501 |
+
if target_scene_duration / source_video_clip.duration > 1.5 and source_video_clip.duration > 0.1 : # Loop if target is >150% of source
|
502 |
+
current_clip = source_video_clip.loop(duration=target_scene_duration)
|
503 |
+
else: # Play once, duration will be its own, MoviePy handles concatenation padding
|
504 |
+
current_clip = source_video_clip.set_duration(source_video_clip.duration) # Explicitly set
|
505 |
+
logger.info(f"Runway clip for S{scene_num} ({source_video_clip.duration:.2f}s) shorter than target ({target_scene_duration:.2f}s), will play once.")
|
506 |
+
else: # Durations match
|
507 |
+
current_clip = source_video_clip
|
508 |
+
|
509 |
+
# Ensure the clip has the target duration for consistent concatenation
|
510 |
+
if current_clip.duration != target_scene_duration:
|
511 |
+
current_clip = current_clip.set_duration(target_scene_duration)
|
512 |
+
|
513 |
+
|
514 |
+
# Resize if necessary (MoviePy does this on CompositeVideoClip too, but explicit can be good)
|
515 |
+
if current_clip.size != list(self.video_frame_size):
|
516 |
+
current_clip = current_clip.resize(self.video_frame_size)
|
517 |
+
|
518 |
+
# Close the original source_video_clip if it's different from current_clip (e.g., after subclip)
|
519 |
+
if current_clip != source_video_clip and hasattr(source_video_clip, 'close'):
|
520 |
+
source_video_clip.close()
|
521 |
+
|
522 |
+
|
523 |
+
else:
|
524 |
+
logger.warning(f"Unknown asset type '{asset_type}' for Scene {scene_num}. Skipping.")
|
525 |
+
continue
|
526 |
+
|
527 |
+
# Add text overlay
|
528 |
+
if current_clip and key_action:
|
529 |
+
text_overlay_duration = min(target_scene_duration - 0.5, target_scene_duration * 0.8) if target_scene_duration > 0.5 else target_scene_duration
|
530 |
+
text_overlay_start = (target_scene_duration - text_overlay_duration) / 2.0
|
531 |
+
if text_overlay_duration > 0:
|
532 |
+
txt_clip = TextClip(f"Scene {scene_num}\n{key_action}",
|
533 |
+
fontsize=self.video_overlay_font_size, color=self.video_overlay_font_color,
|
534 |
+
font=self.video_overlay_font, bg_color='rgba(10,10,20,0.7)',
|
535 |
+
method='caption', align='West', size=(self.video_frame_size[0] * 0.9, None),
|
536 |
+
kerning=-1, stroke_color='black', stroke_width=1.5
|
537 |
+
).set_duration(text_overlay_duration).set_start(text_overlay_start).set_position(('center', 0.92), relative=True)
|
538 |
+
current_clip = CompositeVideoClip([current_clip, txt_clip], size=self.video_frame_size, use_bgclip=True, bg_color=(0,0,0))
|
539 |
|
540 |
+
if current_clip:
|
541 |
+
processed_moviepy_clips.append(current_clip)
|
542 |
|
543 |
+
except Exception as e:
|
544 |
+
logger.error(f"Error processing asset for Scene {scene_num} ({asset_path}): {e}", exc_info=True)
|
545 |
+
if current_clip and hasattr(current_clip, 'close'): current_clip.close() # Ensure closure on error
|
546 |
+
|
547 |
+
if not processed_moviepy_clips:
|
548 |
+
logger.warning("No MoviePy clips successfully processed. Aborting animatic assembly.")
|
549 |
+
return None
|
550 |
+
|
551 |
+
transition_duration = 0.75
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
552 |
try:
|
553 |
+
if len(processed_moviepy_clips) > 1:
|
554 |
+
final_composite_clip = concatenate_videoclips(processed_moviepy_clips, padding=-transition_duration, method="compose")
|
555 |
+
elif processed_moviepy_clips:
|
556 |
+
final_composite_clip = processed_moviepy_clips[0]
|
557 |
+
else: # Should have been caught above, but defensive
|
558 |
+
logger.error("No clips available for final concatenation.")
|
559 |
+
return None
|
560 |
+
|
561 |
+
|
562 |
+
if final_composite_clip.duration > transition_duration * 2:
|
563 |
+
final_composite_clip = final_composite_clip.fx(vfx.fadein, transition_duration).fx(vfx.fadeout, transition_duration)
|
564 |
+
elif final_composite_clip.duration > 0:
|
565 |
+
final_composite_clip = final_composite_clip.fx(vfx.fadein, min(transition_duration, final_composite_clip.duration/2.0))
|
566 |
+
|
567 |
if overall_narration_path and os.path.exists(overall_narration_path):
|
568 |
try:
|
569 |
narration_audio_clip = AudioFileClip(overall_narration_path)
|
570 |
+
if final_composite_clip.duration > 0 and narration_audio_clip.duration < final_composite_clip.duration:
|
571 |
+
logger.info(f"Narration ({narration_audio_clip.duration:.2f}s) shorter than visuals ({final_composite_clip.duration:.2f}s). Trimming video.")
|
572 |
+
final_composite_clip = final_composite_clip.subclip(0, narration_audio_clip.duration)
|
573 |
+
elif final_composite_clip.duration <= 0: logger.warning("Video has no duration. Audio not added.")
|
|
|
574 |
|
575 |
+
if narration_audio_clip and final_composite_clip.duration > 0: # Check again
|
576 |
+
final_composite_clip = final_composite_clip.set_audio(narration_audio_clip)
|
577 |
+
logger.info("Overall narration added.")
|
578 |
+
except Exception as e: logger.error(f"Adding narration error: {e}", exc_info=True)
|
579 |
|
580 |
+
if final_composite_clip and final_composite_clip.duration > 0:
|
581 |
+
output_path = os.path.join(self.output_dir, output_filename)
|
582 |
+
logger.info(f"Writing final animatic: {output_path} (Duration: {final_composite_clip.duration:.2f}s)")
|
583 |
+
final_composite_clip.write_videofile(
|
584 |
+
output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
|
585 |
+
temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
|
586 |
+
remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k"
|
587 |
+
)
|
588 |
+
logger.info(f"Animatic created: {output_path}"); return output_path
|
589 |
+
else: logger.error("Final animatic clip invalid or has no duration. Not writing file."); return None
|
590 |
+
except Exception as e: logger.error(f"Animatic writing error: {e}", exc_info=True); return None
|
591 |
finally:
|
592 |
+
for clip in processed_moviepy_clips:
|
593 |
+
if hasattr(clip, 'close'): clip.close()
|
594 |
if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
|
595 |
+
if final_composite_clip and hasattr(final_composite_clip, 'close'): final_composite_clip.close()
|