mgbam commited on
Commit
63525c7
·
verified ·
1 Parent(s): af8f89c

Update core/visual_engine.py

Browse files
Files changed (1) hide show
  1. core/visual_engine.py +182 -289
core/visual_engine.py CHANGED
@@ -24,7 +24,7 @@ import random
24
  import logging
25
 
26
  logger = logging.getLogger(__name__)
27
- logger.setLevel(logging.INFO)
28
 
29
  # --- ElevenLabs Client Import ---
30
  ELEVENLABS_CLIENT_IMPORTED = False
@@ -38,19 +38,17 @@ try:
38
  Voice = ImportedVoice
39
  VoiceSettings = ImportedVoiceSettings
40
  ELEVENLABS_CLIENT_IMPORTED = True
41
- logger.info("ElevenLabs client components imported.")
42
  except Exception as e_eleven:
43
- logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio generation disabled.")
44
 
45
  # --- RunwayML Client Import (Placeholder) ---
46
  RUNWAYML_SDK_IMPORTED = False
47
  RunwayMLClient = None # Placeholder for the actual RunwayML client class
48
  try:
49
- # This is a hypothetical import. Replace with actual RunwayML SDK import if available.
50
  # Example: from runwayml import RunwayClient as ImportedRunwayMLClient
51
  # RunwayMLClient = ImportedRunwayMLClient
52
  # RUNWAYML_SDK_IMPORTED = True
53
- # logger.info("RunwayML SDK (placeholder) imported.")
54
  logger.info("RunwayML SDK import is a placeholder. Actual SDK needed for Runway features.")
55
  except ImportError:
56
  logger.warning("RunwayML SDK (placeholder) not found. RunwayML video generation will be disabled.")
@@ -66,28 +64,34 @@ class VisualEngine:
66
  self.font_filename = "arial.ttf"
67
  font_paths_to_try = [
68
  self.font_filename,
69
- f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
70
- f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
71
- f"/System/Library/Fonts/Supplemental/Arial.ttf",
72
- f"C:/Windows/Fonts/arial.ttf",
73
- f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}"
74
  ]
75
  self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
76
  self.font_size_pil = 20
77
  self.video_overlay_font_size = 30
78
  self.video_overlay_font_color = 'white'
79
- self.video_overlay_font = 'Liberation-Sans-Bold' # For MoviePy TextClip
80
 
81
  try:
82
- self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
83
- if self.font_path_pil: logger.info(f"Pillow font loaded: {self.font_path_pil}.")
84
- else: logger.warning("Using default Pillow font."); self.font_size_pil = 10
85
- except IOError:
86
- logger.warning("Pillow font error. Using default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
 
 
 
 
 
 
87
 
88
  self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
89
  self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
90
- self.video_frame_size = (1280, 720)
91
 
92
  self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
93
  self.elevenlabs_client = None
@@ -97,17 +101,14 @@ class VisualEngine:
97
  else: self.elevenlabs_voice_settings = None
98
 
99
  self.pexels_api_key = None; self.USE_PEXELS = False
100
-
101
- # <<< RUNWAYML START >>>
102
  self.runway_api_key = None; self.USE_RUNWAYML = False
103
- self.runway_client = None # Placeholder for the actual RunwayML client instance
104
- # <<< RUNWAYML END >>>
105
 
106
  logger.info("VisualEngine initialized.")
107
 
108
  def set_openai_api_key(self,k):
109
  self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
110
- logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
111
 
112
  def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
113
  self.elevenlabs_api_key=api_key
@@ -118,50 +119,39 @@ class VisualEngine:
118
  self.USE_ELEVENLABS=bool(self.elevenlabs_client)
119
  logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
120
  except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
121
- else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK).")
122
 
123
  def set_pexels_api_key(self,k):
124
  self.pexels_api_key=k; self.USE_PEXELS=bool(k)
125
- logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
126
 
127
- # <<< RUNWAYML START >>>
128
  def set_runway_api_key(self, k):
129
  self.runway_api_key = k
130
- if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient: # Assuming RunwayMLClient is the SDK's client class
131
  try:
132
  # self.runway_client = RunwayMLClient(api_key=k) # Actual initialization
133
- self.USE_RUNWAYML = True # Assume success for placeholder
134
- logger.info(f"RunwayML Client (Placeholder) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
135
- except Exception as e:
136
- logger.error(f"RunwayML client (Placeholder) init error: {e}. Disabled.", exc_info=True)
137
- self.USE_RUNWAYML = False
138
- elif k and not (RUNWAYML_SDK_IMPORTED and RunwayMLClient):
139
- self.USE_RUNWAYML = True # Allow use with direct HTTP requests if SDK isn't used/available
140
- logger.info("RunwayML API Key set. SDK (Placeholder) not imported/used. Direct API calls would be needed.")
141
- else:
142
- self.USE_RUNWAYML = False
143
- logger.info("RunwayML Disabled (no API key or SDK issue).")
144
- # <<< RUNWAYML END >>>
145
 
146
  def _get_text_dimensions(self,text_content,font_obj):
147
- # ... (no changes from your previous version)
148
  if not text_content: return 0,self.font_size_pil
149
  try:
150
- if hasattr(font_obj,'getbbox'): # Pillow 8.0.0+
151
  bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
152
  return w, h if h > 0 else self.font_size_pil
153
- elif hasattr(font_obj,'getsize'): # Older Pillow
154
  w,h=font_obj.getsize(text_content)
155
  return w, h if h > 0 else self.font_size_pil
156
- else: # Should not happen with standard ImageFont objects
157
- return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
158
- except Exception as e:
159
- logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}")
160
- return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2) # Fallback
161
-
162
 
163
  def _create_placeholder_image_content(self,text_description,filename,size=None):
164
- # ... (no changes from your previous version, ensure filename includes extension e.g. .png)
165
  if size is None: size = self.video_frame_size
166
  img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
167
  if not text_description: text_description="(Placeholder: No prompt text)"
@@ -172,18 +162,14 @@ class VisualEngine:
172
  else:
173
  if current_line: lines.append(current_line.strip());
174
  current_line=word+" "
175
- if current_line.strip(): lines.append(current_line.strip()) # Add last line
176
- if not lines and text_description: lines.append(text_description[:int(max_w//(self.font_size_pil*0.6 +1))]+"..." if text_description else "(Text too long)") # Handle single very long word
177
  elif not lines: lines.append("(Placeholder Text Error)")
178
-
179
  _,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
180
-
181
  max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
182
- if max_lines_to_display <=0: max_lines_to_display = 1 # Ensure at least one line can be attempted
183
-
184
  y_text_start = padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
185
  y_text = y_text_start
186
-
187
  for i in range(max_lines_to_display):
188
  line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
189
  d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
@@ -192,12 +178,10 @@ class VisualEngine:
192
  try:img.save(filepath);return filepath
193
  except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None
194
 
195
-
196
  def _search_pexels_image(self, query, output_filename_base):
197
- # ... (no changes from your previous version, ensure output_filename_base has .png for consistency, it will be replaced)
198
  if not self.USE_PEXELS or not self.pexels_api_key: return None
199
  headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"}
200
- # Use a more unique filename for Pexels images to avoid clashes if query is similar
201
  pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
202
  filepath = os.path.join(self.output_dir, pexels_filename)
203
  try:
@@ -205,7 +189,7 @@ class VisualEngine:
205
  response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
206
  response.raise_for_status(); data = response.json()
207
  if data.get("photos") and len(data["photos"]) > 0:
208
- photo_url = data["photos"][0]["src"]["large2x"] # Using large2x for better quality
209
  image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
210
  img_data = Image.open(io.BytesIO(image_response.content))
211
  if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
@@ -214,129 +198,61 @@ class VisualEngine:
214
  except Exception as e: logger.error(f"Pexels search/download for query '{query}': {e}", exc_info=True)
215
  return None
216
 
217
-
218
- # <<< RUNWAYML START >>>
219
  def _generate_video_clip_with_runwayml(self, prompt_text, scene_identifier_filename_base, target_duration_seconds=4, input_image_path=None):
220
- """
221
- Placeholder for generating a video clip using RunwayML.
222
- This needs to be implemented with the actual RunwayML SDK or API.
223
- """
224
  if not self.USE_RUNWAYML or not self.runway_api_key:
225
  logger.warning("RunwayML not enabled or API key missing. Cannot generate video clip.")
226
  return None
227
-
228
  output_video_filename = scene_identifier_filename_base.replace(".png", ".mp4") # Ensure .mp4 extension
229
  output_video_filepath = os.path.join(self.output_dir, output_video_filename)
230
-
231
  logger.info(f"Attempting RunwayML video generation for: {prompt_text[:100]}... (Target duration: {target_duration_seconds}s)")
232
- logger.info(f"RunwayML Output (Placeholder): {output_video_filepath}")
233
-
234
- # --- START ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
235
- # This section is highly dependent on RunwayML's specific API/SDK.
236
- # Example using a hypothetical SDK:
237
- # try:
238
- # if not self.runway_client:
239
- # # self.runway_client = RunwayMLClient(api_key=self.runway_api_key) # Or however it's initialized
240
- # logger.warning("RunwayML client not initialized (Placeholder).")
241
- # # For placeholder, simulate creating a dummy video file
242
- # return self._create_placeholder_video_content(prompt_text, output_video_filename, duration=target_duration_seconds)
243
-
244
-
245
- # generation_params = {
246
- # "text_prompt": prompt_text,
247
- # "duration_seconds": target_duration_seconds,
248
- # "width": self.video_frame_size[0], # Or Runway's supported sizes
249
- # "height": self.video_frame_size[1],
250
- # # Add other params like seed, motion scale, etc.
251
- # }
252
- # if input_image_path and os.path.exists(input_image_path):
253
- # generation_params["input_image_path"] = input_image_path # For image-to-video
254
- # logger.info(f"Using input image for RunwayML: {input_image_path}")
255
-
256
- # task_id = self.runway_client.submit_video_generation_task(**generation_params) # Hypothetical
257
- # logger.info(f"RunwayML task submitted: {task_id}. Polling for completion...")
258
-
259
- # while True:
260
- # status = self.runway_client.get_task_status(task_id) # Hypothetical
261
- # if status == "completed":
262
- # video_url = self.runway_client.get_video_url(task_id) # Hypothetical
263
- # video_response = requests.get(video_url, stream=True, timeout=300)
264
- # video_response.raise_for_status()
265
- # with open(output_video_filepath, 'wb') as f:
266
- # for chunk in video_response.iter_content(chunk_size=8192):
267
- # f.write(chunk)
268
- # logger.info(f"RunwayML video downloaded and saved: {output_video_filepath}")
269
- # return output_video_filepath
270
- # elif status in ["failed", "error"]:
271
- # logger.error(f"RunwayML task {task_id} failed.")
272
- # return None
273
- # time.sleep(10) # Poll interval
274
-
275
- # except Exception as e:
276
- # logger.error(f"Error during RunwayML video generation: {e}", exc_info=True)
277
- # return None
278
  # --- END ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
279
-
280
- # For now, as a placeholder, create a dummy MP4 file with MoviePy
281
- # This allows the rest of the pipeline to be tested.
282
- # **REPLACE THIS WITH ACTUAL RUNWAYML CALLS**
283
- logger.warning("Using PLACEHOLDER video generation for RunwayML.")
284
  return self._create_placeholder_video_content(f"[RunwayML Placeholder] {prompt_text}", output_video_filename, duration=target_duration_seconds)
285
 
286
  def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
287
- """Creates a short video clip with text as a placeholder."""
288
  if size is None: size = self.video_frame_size
289
  filepath = os.path.join(self.output_dir, filename)
290
-
291
- # Create a simple text clip
292
  txt_clip = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font,
293
  bg_color='black', size=size, method='caption').set_duration(duration)
294
-
295
  try:
296
  txt_clip.write_videofile(filepath, fps=24, codec='libx264', preset='ultrafast', logger=None)
297
  logger.info(f"Placeholder video saved: {filepath}")
298
  return filepath
299
- except Exception as e:
300
- logger.error(f"Failed to create placeholder video {filepath}: {e}", exc_info=True)
301
- return None
302
  finally:
303
  if hasattr(txt_clip, 'close'): txt_clip.close()
304
- # <<< RUNWAYML END >>>
305
-
306
 
307
  def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
308
  generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
309
- """
310
- Generates either an image or a video clip for a scene.
311
- Returns a dictionary: {'path': asset_path, 'type': 'image'/'video', 'error': bool}
312
- """
313
- # Ensure scene_identifier_filename_base does not have an extension yet, or handle it
314
  base_name, _ = os.path.splitext(scene_identifier_filename_base)
 
315
 
316
  if generate_as_video_clip and self.USE_RUNWAYML:
317
  logger.info(f"Attempting RunwayML video clip generation for {base_name}")
318
  video_path = self._generate_video_clip_with_runwayml(
319
- image_prompt_text, # Use DALL-E prompt also for Runway text-to-video
320
- base_name, # Pass base name, function will add .mp4
321
  target_duration_seconds=runway_target_duration,
322
  input_image_path=input_image_for_runway
323
  )
324
  if video_path and os.path.exists(video_path):
325
- return {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
 
326
  else:
327
  logger.warning(f"RunwayML video clip generation failed for {base_name}. Falling back to image.")
 
328
  # Fall through to image generation
329
 
330
  # Image Generation (DALL-E, Pexels, Placeholder)
331
- # Ensure image filename has .png
332
- image_filename_with_ext = base_name + ".png"
333
  filepath = os.path.join(self.output_dir, image_filename_with_ext)
 
334
 
335
  if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
336
  max_retries = 2
337
  for attempt in range(max_retries):
338
  try:
339
- # ... (DALL-E generation logic - no changes from your previous version) ...
340
  logger.info(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
341
  client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
342
  response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
@@ -346,120 +262,93 @@ class VisualEngine:
346
  img_data = Image.open(io.BytesIO(image_response.content));
347
  if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
348
  img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
349
- return {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': revised_prompt}
350
- except openai.RateLimitError as e:
351
- logger.warning(f"OpenAI Rate Limit: {e}. Retrying after {5*(attempt+1)}s..."); time.sleep(5 * (attempt + 1))
352
- if attempt == max_retries - 1: logger.error("Max retries for RateLimitError."); break
353
- except openai.APIError as e: logger.error(f"OpenAI API Error: {e}"); break
354
- except requests.exceptions.RequestException as e: logger.error(f"Requests Error (DALL-E download): {e}"); break
355
- except Exception as e: logger.error(f"Generic error (DALL-E gen): {e}", exc_info=True); break
356
- logger.warning("DALL-E generation failed. Trying Pexels fallback...")
357
 
358
- # Pexels or Placeholder if DALL-E failed or disabled
359
- if self.USE_PEXELS:
360
  pexels_query_text = scene_data.get('pexels_search_query_감독', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
361
- pexels_path = self._search_pexels_image(pexels_query_text, image_filename_with_ext) # Pass filename with extension
362
  if pexels_path:
363
- return {'path': pexels_path, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pexels_query_text}"}
364
- logger.warning("Pexels also failed/disabled. Using placeholder image.")
365
-
366
- placeholder_path = self._create_placeholder_image_content(
367
- f"[AI/Pexels Failed] {image_prompt_text[:100]}...", image_filename_with_ext
368
- )
369
- if placeholder_path:
370
- return {'path': placeholder_path, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text}
371
- else:
372
- return {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_prompt_text}
373
-
 
 
 
 
 
374
 
375
  def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
376
- # ... (no changes from your previous version) ...
377
  if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
378
  logger.info("ElevenLabs conditions not met (API key, client init, or text). Skipping audio.")
379
  return None
380
-
381
  audio_filepath = os.path.join(self.output_dir, output_filename)
382
  try:
383
  logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
384
-
385
  audio_stream_method = None
386
  if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
387
- audio_stream_method = self.elevenlabs_client.text_to_speech.stream
388
- logger.info("Using elevenlabs_client.text_to_speech.stream()")
389
- elif hasattr(self.elevenlabs_client, 'generate_stream') : # Older SDK might have this
390
- audio_stream_method = self.elevenlabs_client.generate_stream
391
- logger.info("Using elevenlabs_client.generate_stream()")
392
- elif hasattr(self.elevenlabs_client, 'generate'): # Fallback to non-streaming
393
  logger.info("Using elevenlabs_client.generate() (non-streaming).")
394
- # This one doesn't return a stream, it returns bytes directly
395
  voice_param = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id)
396
- audio_bytes = self.elevenlabs_client.generate(
397
- text=text_to_narrate,
398
- voice=voice_param,
399
- model="eleven_multilingual_v2" # or other suitable model
400
- )
401
- with open(audio_filepath, "wb") as f:
402
- f.write(audio_bytes)
403
- logger.info(f"ElevenLabs audio (non-streamed) saved: {audio_filepath}")
404
- return audio_filepath
405
- else:
406
- logger.error("No recognized audio generation method found on ElevenLabs client.")
407
- return None
408
 
409
- # If we have a streaming method
410
  if audio_stream_method:
411
  voice_param_for_stream = {"voice_id": str(self.elevenlabs_voice_id)}
412
- # For Pydantic v1 style for elevenlabs sdk <1.0
413
- # if self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'dict'):
414
- # voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.dict()
415
- # For Pydantic v2 style for elevenlabs skd >=1.0
416
- if self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'model_dump'):
417
  voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
418
- elif self.elevenlabs_voice_settings : # If not a pydantic model, pass as is if supported
419
- voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings
420
-
421
- audio_data_iterator = audio_stream_method(
422
- text=text_to_narrate,
423
- model_id="eleven_multilingual_v2",
424
- **voice_param_for_stream
425
- )
426
  with open(audio_filepath, "wb") as f:
427
  for chunk in audio_data_iterator:
428
  if chunk: f.write(chunk)
429
- logger.info(f"ElevenLabs audio (streamed) saved: {audio_filepath}")
430
- return audio_filepath
431
-
432
- except AttributeError as ae:
433
- logger.error(f"AttributeError with ElevenLabs client: {ae}. SDK method/params might be different.", exc_info=True)
434
- except Exception as e:
435
- logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
436
  return None
437
 
438
  def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
439
- """
440
- Assembles the final video from a list of assets (images or video clips).
441
- Each item in asset_data_list should be a dict like:
442
- {'path': 'path/to/asset', 'type': 'image'|'video', 'duration': desired_scene_duration_in_animatic,
443
- 'scene_num': num, 'key_action': 'text'}
444
- """
445
  if not asset_data_list:
446
  logger.warning("No asset data provided for animatic assembly.")
447
  return None
448
 
449
  processed_moviepy_clips = []
450
  narration_audio_clip = None
451
- final_composite_clip = None
452
  total_video_duration_from_assets = sum(item.get('duration', 4.5) for item in asset_data_list)
453
  logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}. Approx total duration: {total_video_duration_from_assets:.2f}s.")
454
 
455
  for i, asset_info in enumerate(asset_data_list):
456
  asset_path = asset_info.get('path')
457
  asset_type = asset_info.get('type')
458
- # This 'duration' is the desired display duration of THIS scene in the final animatic
459
- target_scene_duration = asset_info.get('duration', 4.5) # Default if not specified
460
  scene_num = asset_info.get('scene_num', i + 1)
461
  key_action = asset_info.get('key_action', '')
462
 
 
 
463
  if not (asset_path and os.path.exists(asset_path)):
464
  logger.warning(f"Asset not found for Scene {scene_num}: {asset_path}. Skipping.")
465
  continue
@@ -467,65 +356,82 @@ class VisualEngine:
467
  logger.warning(f"Scene {scene_num} has invalid duration ({target_scene_duration}s). Skipping.")
468
  continue
469
 
470
- current_clip = None
471
  try:
472
  if asset_type == 'image':
 
473
  pil_img = Image.open(asset_path)
474
- if pil_img.mode != 'RGB': pil_img = pil_img.convert('RGB')
 
 
 
 
 
475
  img_copy = pil_img.copy()
476
  resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else (Image.ANTIALIAS if hasattr(Image, 'ANTIALIAS') else Image.BILINEAR)
477
  img_copy.thumbnail(self.video_frame_size, resample_filter)
478
- canvas = Image.new('RGB', self.video_frame_size, (random.randint(0,10), random.randint(0,10), random.randint(0,10)))
 
 
 
479
  xo, yo = (self.video_frame_size[0] - img_copy.width) // 2, (self.video_frame_size[1] - img_copy.height) // 2
480
- canvas.paste(img_copy, (xo, yo))
481
- frame_np = np.array(canvas)
482
- current_clip_base = ImageClip(frame_np).set_duration(target_scene_duration)
483
 
484
- # Ken Burns for ImageClips
485
- try:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486
  end_scale = random.uniform(1.03, 1.08)
487
- current_clip = current_clip_base.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / target_scene_duration)).set_position('center')
488
- except Exception as e_fx:
489
- logger.error(f"Ken Burns error for image {asset_path}: {e_fx}. Using static image.")
490
- current_clip = current_clip_base
491
 
492
  elif asset_type == 'video':
493
- source_video_clip = VideoFileClip(asset_path, target_resolution=(self.video_frame_size[1], self.video_frame_size[0]))
494
- # Fit video into target_scene_duration:
495
- # If source is shorter, it will play once. If longer, it will be cut.
496
- # For more complex looping/speed adjustments, more logic is needed.
 
497
  if source_video_clip.duration > target_scene_duration:
498
- current_clip = source_video_clip.subclip(0, target_scene_duration)
499
  elif source_video_clip.duration < target_scene_duration:
500
- # Simple loop if significantly shorter, or just play once if close
501
- if target_scene_duration / source_video_clip.duration > 1.5 and source_video_clip.duration > 0.1 : # Loop if target is >150% of source
502
- current_clip = source_video_clip.loop(duration=target_scene_duration)
503
- else: # Play once, duration will be its own, MoviePy handles concatenation padding
504
- current_clip = source_video_clip.set_duration(source_video_clip.duration) # Explicitly set
505
- logger.info(f"Runway clip for S{scene_num} ({source_video_clip.duration:.2f}s) shorter than target ({target_scene_duration:.2f}s), will play once.")
506
- else: # Durations match
507
- current_clip = source_video_clip
508
 
509
- # Ensure the clip has the target duration for consistent concatenation
510
- if current_clip.duration != target_scene_duration:
511
- current_clip = current_clip.set_duration(target_scene_duration)
512
-
513
 
514
- # Resize if necessary (MoviePy does this on CompositeVideoClip too, but explicit can be good)
515
- if current_clip.size != list(self.video_frame_size):
516
- current_clip = current_clip.resize(self.video_frame_size)
517
 
518
- # Close the original source_video_clip if it's different from current_clip (e.g., after subclip)
519
- if current_clip != source_video_clip and hasattr(source_video_clip, 'close'):
 
520
  source_video_clip.close()
 
521
 
 
522
 
523
- else:
524
- logger.warning(f"Unknown asset type '{asset_type}' for Scene {scene_num}. Skipping.")
525
- continue
526
-
527
- # Add text overlay
528
- if current_clip and key_action:
529
  text_overlay_duration = min(target_scene_duration - 0.5, target_scene_duration * 0.8) if target_scene_duration > 0.5 else target_scene_duration
530
  text_overlay_start = (target_scene_duration - text_overlay_duration) / 2.0
531
  if text_overlay_duration > 0:
@@ -535,61 +441,48 @@ class VisualEngine:
535
  method='caption', align='West', size=(self.video_frame_size[0] * 0.9, None),
536
  kerning=-1, stroke_color='black', stroke_width=1.5
537
  ).set_duration(text_overlay_duration).set_start(text_overlay_start).set_position(('center', 0.92), relative=True)
538
- current_clip = CompositeVideoClip([current_clip, txt_clip], size=self.video_frame_size, use_bgclip=True, bg_color=(0,0,0))
 
539
 
540
- if current_clip:
541
- processed_moviepy_clips.append(current_clip)
 
 
 
542
 
543
- except Exception as e:
544
- logger.error(f"Error processing asset for Scene {scene_num} ({asset_path}): {e}", exc_info=True)
545
- if current_clip and hasattr(current_clip, 'close'): current_clip.close() # Ensure closure on error
546
-
547
- if not processed_moviepy_clips:
548
- logger.warning("No MoviePy clips successfully processed. Aborting animatic assembly.")
549
- return None
550
 
 
 
551
  transition_duration = 0.75
552
  try:
553
- if len(processed_moviepy_clips) > 1:
554
- final_composite_clip = concatenate_videoclips(processed_moviepy_clips, padding=-transition_duration, method="compose")
555
- elif processed_moviepy_clips:
556
- final_composite_clip = processed_moviepy_clips[0]
557
- else: # Should have been caught above, but defensive
558
- logger.error("No clips available for final concatenation.")
559
- return None
560
 
 
 
561
 
562
- if final_composite_clip.duration > transition_duration * 2:
563
- final_composite_clip = final_composite_clip.fx(vfx.fadein, transition_duration).fx(vfx.fadeout, transition_duration)
564
- elif final_composite_clip.duration > 0:
565
- final_composite_clip = final_composite_clip.fx(vfx.fadein, min(transition_duration, final_composite_clip.duration/2.0))
566
-
567
- if overall_narration_path and os.path.exists(overall_narration_path):
568
  try:
569
  narration_audio_clip = AudioFileClip(overall_narration_path)
570
- if final_composite_clip.duration > 0 and narration_audio_clip.duration < final_composite_clip.duration:
571
  logger.info(f"Narration ({narration_audio_clip.duration:.2f}s) shorter than visuals ({final_composite_clip.duration:.2f}s). Trimming video.")
572
  final_composite_clip = final_composite_clip.subclip(0, narration_audio_clip.duration)
573
- elif final_composite_clip.duration <= 0: logger.warning("Video has no duration. Audio not added.")
574
-
575
- if narration_audio_clip and final_composite_clip.duration > 0: # Check again
576
- final_composite_clip = final_composite_clip.set_audio(narration_audio_clip)
577
- logger.info("Overall narration added.")
578
  except Exception as e: logger.error(f"Adding narration error: {e}", exc_info=True)
 
579
 
580
  if final_composite_clip and final_composite_clip.duration > 0:
581
  output_path = os.path.join(self.output_dir, output_filename)
582
  logger.info(f"Writing final animatic: {output_path} (Duration: {final_composite_clip.duration:.2f}s)")
583
- final_composite_clip.write_videofile(
584
- output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
585
- temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
586
- remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k"
587
- )
588
  logger.info(f"Animatic created: {output_path}"); return output_path
589
- else: logger.error("Final animatic clip invalid or has no duration. Not writing file."); return None
590
  except Exception as e: logger.error(f"Animatic writing error: {e}", exc_info=True); return None
591
  finally:
592
- for clip in processed_moviepy_clips:
593
- if hasattr(clip, 'close'): clip.close()
594
  if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
595
  if final_composite_clip and hasattr(final_composite_clip, 'close'): final_composite_clip.close()
 
24
  import logging
25
 
26
  logger = logging.getLogger(__name__)
27
+ logger.setLevel(logging.INFO) # Set default logging level for this module
28
 
29
  # --- ElevenLabs Client Import ---
30
  ELEVENLABS_CLIENT_IMPORTED = False
 
38
  Voice = ImportedVoice
39
  VoiceSettings = ImportedVoiceSettings
40
  ELEVENLABS_CLIENT_IMPORTED = True
41
+ logger.info("ElevenLabs client components imported successfully.")
42
  except Exception as e_eleven:
43
+ logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio generation will be disabled.")
44
 
45
  # --- RunwayML Client Import (Placeholder) ---
46
  RUNWAYML_SDK_IMPORTED = False
47
  RunwayMLClient = None # Placeholder for the actual RunwayML client class
48
  try:
 
49
  # Example: from runwayml import RunwayClient as ImportedRunwayMLClient
50
  # RunwayMLClient = ImportedRunwayMLClient
51
  # RUNWAYML_SDK_IMPORTED = True
 
52
  logger.info("RunwayML SDK import is a placeholder. Actual SDK needed for Runway features.")
53
  except ImportError:
54
  logger.warning("RunwayML SDK (placeholder) not found. RunwayML video generation will be disabled.")
 
64
  self.font_filename = "arial.ttf"
65
  font_paths_to_try = [
66
  self.font_filename,
67
+ f"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", # Common on Linux
68
+ f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", # Common on Linux
69
+ f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS
70
+ f"C:/Windows/Fonts/arial.ttf", # Windows
71
+ f"/usr/local/share/fonts/truetype/mycustomfonts/{self.font_filename}" # Custom container path
72
  ]
73
  self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
74
  self.font_size_pil = 20
75
  self.video_overlay_font_size = 30
76
  self.video_overlay_font_color = 'white'
77
+ self.video_overlay_font = 'Liberation-Sans-Bold' # For MoviePy TextClip (ImageMagick name)
78
 
79
  try:
80
+ if self.font_path_pil:
81
+ self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
82
+ logger.info(f"Pillow font loaded: {self.font_path_pil}.")
83
+ else: # Fallback to default if no path found
84
+ self.font = ImageFont.load_default()
85
+ logger.warning("Custom Pillow font not found from paths. Using default. Text rendering might be basic.")
86
+ self.font_size_pil = 10 # Default font is smaller
87
+ except IOError as e_font: # Catch specific IOError for font loading
88
+ logger.error(f"Pillow font loading IOError for '{self.font_path_pil if self.font_path_pil else 'default'}': {e_font}. Using default.")
89
+ self.font = ImageFont.load_default()
90
+ self.font_size_pil = 10
91
 
92
  self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
93
  self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
94
+ self.video_frame_size = (1280, 720) # Standard HD 16:9
95
 
96
  self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False
97
  self.elevenlabs_client = None
 
101
  else: self.elevenlabs_voice_settings = None
102
 
103
  self.pexels_api_key = None; self.USE_PEXELS = False
 
 
104
  self.runway_api_key = None; self.USE_RUNWAYML = False
105
+ self.runway_client = None
 
106
 
107
  logger.info("VisualEngine initialized.")
108
 
109
  def set_openai_api_key(self,k):
110
  self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k)
111
+ logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled (no API key).'}")
112
 
113
  def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
114
  self.elevenlabs_api_key=api_key
 
119
  self.USE_ELEVENLABS=bool(self.elevenlabs_client)
120
  logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
121
  except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
122
+ else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no API key or SDK issue).")
123
 
124
  def set_pexels_api_key(self,k):
125
  self.pexels_api_key=k; self.USE_PEXELS=bool(k)
126
+ logger.info(f"Pexels Search {'Ready.' if k else 'Disabled (no API key).'}")
127
 
 
128
  def set_runway_api_key(self, k):
129
  self.runway_api_key = k
130
+ if k and RUNWAYML_SDK_IMPORTED and RunwayMLClient:
131
  try:
132
  # self.runway_client = RunwayMLClient(api_key=k) # Actual initialization
133
+ self.USE_RUNWAYML = True # Assume success for placeholder with hypothetical SDK
134
+ logger.info(f"RunwayML Client (Placeholder with SDK) {'Ready.' if self.USE_RUNWAYML else 'Failed Init.'}")
135
+ except Exception as e: logger.error(f"RunwayML client (Placeholder with SDK) init error: {e}. Disabled.", exc_info=True); self.USE_RUNWAYML = False
136
+ elif k: # API key provided, but SDK might not be used/imported (e.g., direct HTTP)
137
+ self.USE_RUNWAYML = True
138
+ logger.info("RunwayML API Key set. Using direct API calls or placeholder (SDK not fully integrated/imported).")
139
+ else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")
 
 
 
 
 
140
 
141
  def _get_text_dimensions(self,text_content,font_obj):
 
142
  if not text_content: return 0,self.font_size_pil
143
  try:
144
+ if hasattr(font_obj,'getbbox'):
145
  bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
146
  return w, h if h > 0 else self.font_size_pil
147
+ elif hasattr(font_obj,'getsize'):
148
  w,h=font_obj.getsize(text_content)
149
  return w, h if h > 0 else self.font_size_pil
150
+ else: return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2 if self.font_size_pil*1.2>0 else self.font_size_pil)
151
+ except Exception as e: logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}"); return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2)
 
 
 
 
152
 
153
  def _create_placeholder_image_content(self,text_description,filename,size=None):
154
+ # (No significant changes from your previous correct version)
155
  if size is None: size = self.video_frame_size
156
  img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
157
  if not text_description: text_description="(Placeholder: No prompt text)"
 
162
  else:
163
  if current_line: lines.append(current_line.strip());
164
  current_line=word+" "
165
+ if current_line.strip(): lines.append(current_line.strip())
166
+ if not lines and text_description: lines.append(text_description[:int(max_w//(self.font_size_pil*0.6 +1))]+"..." if text_description else "(Text too long)")
167
  elif not lines: lines.append("(Placeholder Text Error)")
 
168
  _,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
 
169
  max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
170
+ if max_lines_to_display <=0: max_lines_to_display = 1
 
171
  y_text_start = padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
172
  y_text = y_text_start
 
173
  for i in range(max_lines_to_display):
174
  line_content=lines[i];line_w,_=self._get_text_dimensions(line_content,self.font);x_text=(size[0]-line_w)/2.0
175
  d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180));y_text+=single_line_h+2
 
178
  try:img.save(filepath);return filepath
179
  except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None
180
 
 
181
  def _search_pexels_image(self, query, output_filename_base):
182
+ # (No significant changes from your previous correct version)
183
  if not self.USE_PEXELS or not self.pexels_api_key: return None
184
  headers = {"Authorization": self.pexels_api_key}; params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large"}
 
185
  pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
186
  filepath = os.path.join(self.output_dir, pexels_filename)
187
  try:
 
189
  response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
190
  response.raise_for_status(); data = response.json()
191
  if data.get("photos") and len(data["photos"]) > 0:
192
+ photo_url = data["photos"][0]["src"]["large2x"]
193
  image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
194
  img_data = Image.open(io.BytesIO(image_response.content))
195
  if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
 
198
  except Exception as e: logger.error(f"Pexels search/download for query '{query}': {e}", exc_info=True)
199
  return None
200
 
 
 
201
  def _generate_video_clip_with_runwayml(self, prompt_text, scene_identifier_filename_base, target_duration_seconds=4, input_image_path=None):
 
 
 
 
202
  if not self.USE_RUNWAYML or not self.runway_api_key:
203
  logger.warning("RunwayML not enabled or API key missing. Cannot generate video clip.")
204
  return None
 
205
  output_video_filename = scene_identifier_filename_base.replace(".png", ".mp4") # Ensure .mp4 extension
206
  output_video_filepath = os.path.join(self.output_dir, output_video_filename)
 
207
  logger.info(f"Attempting RunwayML video generation for: {prompt_text[:100]}... (Target duration: {target_duration_seconds}s)")
208
+ # --- START ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL - NEEDS IMPLEMENTATION) ---
209
+ # ... (Your actual RunwayML API call logic would go here) ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
  # --- END ACTUAL RUNWAYML API INTERACTION (HYPOTHETICAL) ---
211
+ logger.warning("Using PLACEHOLDER video generation for RunwayML as actual API calls are not implemented.")
 
 
 
 
212
  return self._create_placeholder_video_content(f"[RunwayML Placeholder] {prompt_text}", output_video_filename, duration=target_duration_seconds)
213
 
214
  def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
 
215
  if size is None: size = self.video_frame_size
216
  filepath = os.path.join(self.output_dir, filename)
 
 
217
  txt_clip = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font,
218
  bg_color='black', size=size, method='caption').set_duration(duration)
 
219
  try:
220
  txt_clip.write_videofile(filepath, fps=24, codec='libx264', preset='ultrafast', logger=None)
221
  logger.info(f"Placeholder video saved: {filepath}")
222
  return filepath
223
+ except Exception as e: logger.error(f"Failed to create placeholder video {filepath}: {e}", exc_info=True); return None
 
 
224
  finally:
225
  if hasattr(txt_clip, 'close'): txt_clip.close()
 
 
226
 
227
  def generate_scene_asset(self, image_prompt_text, scene_data, scene_identifier_filename_base,
228
  generate_as_video_clip=False, runway_target_duration=4, input_image_for_runway=None):
 
 
 
 
 
229
  base_name, _ = os.path.splitext(scene_identifier_filename_base)
230
+ asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_prompt_text, 'error_message': 'Generation not attempted'}
231
 
232
  if generate_as_video_clip and self.USE_RUNWAYML:
233
  logger.info(f"Attempting RunwayML video clip generation for {base_name}")
234
  video_path = self._generate_video_clip_with_runwayml(
235
+ image_prompt_text, base_name,
 
236
  target_duration_seconds=runway_target_duration,
237
  input_image_path=input_image_for_runway
238
  )
239
  if video_path and os.path.exists(video_path):
240
+ asset_info = {'path': video_path, 'type': 'video', 'error': False, 'prompt_used': image_prompt_text}
241
+ return asset_info # Successfully generated video
242
  else:
243
  logger.warning(f"RunwayML video clip generation failed for {base_name}. Falling back to image.")
244
+ asset_info['error_message'] = "RunwayML video generation failed."
245
  # Fall through to image generation
246
 
247
  # Image Generation (DALL-E, Pexels, Placeholder)
248
+ image_filename_with_ext = base_name + ".png" # Ensure .png for image
 
249
  filepath = os.path.join(self.output_dir, image_filename_with_ext)
250
+ asset_info['type'] = 'image' # Tentatively set type to image for this path
251
 
252
  if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
253
  max_retries = 2
254
  for attempt in range(max_retries):
255
  try:
 
256
  logger.info(f"Attempt {attempt+1}: DALL-E ({self.dalle_model}) for: {image_prompt_text[:100]}...")
257
  client = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
258
  response = client.images.generate(model=self.dalle_model, prompt=image_prompt_text, n=1, size=self.image_size_dalle3, quality="hd", response_format="url", style="vivid")
 
262
  img_data = Image.open(io.BytesIO(image_response.content));
263
  if img_data.mode != 'RGB': img_data = img_data.convert('RGB')
264
  img_data.save(filepath); logger.info(f"AI Image (DALL-E) saved: {filepath}");
265
+ asset_info = {'path': filepath, 'type': 'image', 'error': False, 'prompt_used': image_prompt_text, 'revised_prompt': revised_prompt}
266
+ return asset_info
267
+ except openai.RateLimitError as e_rate: logger.warning(f"OpenAI Rate Limit: {e_rate}. Retrying..."); time.sleep(5 * (attempt + 1)); asset_info['error_message'] = str(e_rate)
268
+ except openai.APIError as e_api: logger.error(f"OpenAI API Error: {e_api}"); asset_info['error_message'] = str(e_api); break
269
+ except requests.exceptions.RequestException as e_req: logger.error(f"Requests Error (DALL-E download): {e_req}"); asset_info['error_message'] = str(e_req); break
270
+ except Exception as e_gen: logger.error(f"Generic error (DALL-E gen): {e_gen}", exc_info=True); asset_info['error_message'] = str(e_gen); break
271
+ if attempt == max_retries - 1: logger.error("Max retries for DALL-E RateLimitError."); break
272
+ if asset_info['error']: logger.warning("DALL-E generation failed. Trying Pexels fallback...")
273
 
274
+ if self.USE_PEXELS and (asset_info['error'] or not (self.USE_AI_IMAGE_GENERATION and self.openai_api_key)): # Try Pexels if DALL-E failed or disabled
 
275
  pexels_query_text = scene_data.get('pexels_search_query_감독', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
276
+ pexels_path = self._search_pexels_image(pexels_query_text, image_filename_with_ext)
277
  if pexels_path:
278
+ asset_info = {'path': pexels_path, 'type': 'image', 'error': False, 'prompt_used': f"Pexels: {pexels_query_text}"}
279
+ return asset_info
280
+ asset_info['error_message'] = (asset_info.get('error_message', "") + " Pexels search also failed or disabled.").strip()
281
+ if not asset_info['error']: logger.warning("Pexels search failed or disabled.") # If DALL-E wasn't even tried
282
+
283
+ # Fallback to placeholder if all else fails
284
+ if asset_info['error']: # Only create placeholder if previous steps failed
285
+ logger.warning("All generation methods failed. Using placeholder image.")
286
+ placeholder_prompt_text = asset_info.get('prompt_used', image_prompt_text) # Use the prompt that was attempted
287
+ placeholder_path = self._create_placeholder_image_content(f"[Fallback Placeholder] {placeholder_prompt_text[:100]}...", image_filename_with_ext)
288
+ if placeholder_path:
289
+ asset_info = {'path': placeholder_path, 'type': 'image', 'error': False, 'prompt_used': placeholder_prompt_text}
290
+ return asset_info
291
+ else: # Final failure
292
+ asset_info['error_message'] = (asset_info.get('error_message', "") + " Placeholder creation also failed.").strip()
293
+ return asset_info # Return whatever state asset_info is in (could be error=True)
294
 
295
  def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
296
+ # (No significant changes from your previous correct version, ensure error handling is robust)
297
  if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
298
  logger.info("ElevenLabs conditions not met (API key, client init, or text). Skipping audio.")
299
  return None
 
300
  audio_filepath = os.path.join(self.output_dir, output_filename)
301
  try:
302
  logger.info(f"Generating ElevenLabs audio (Voice ID: {self.elevenlabs_voice_id}) for: {text_to_narrate[:70]}...")
 
303
  audio_stream_method = None
304
  if hasattr(self.elevenlabs_client, 'text_to_speech') and hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
305
+ audio_stream_method = self.elevenlabs_client.text_to_speech.stream; logger.info("Using elevenlabs_client.text_to_speech.stream()")
306
+ elif hasattr(self.elevenlabs_client, 'generate_stream') : audio_stream_method = self.elevenlabs_client.generate_stream; logger.info("Using elevenlabs_client.generate_stream()")
307
+ elif hasattr(self.elevenlabs_client, 'generate'):
 
 
 
308
  logger.info("Using elevenlabs_client.generate() (non-streaming).")
 
309
  voice_param = Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings) if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id)
310
+ audio_bytes = self.elevenlabs_client.generate(text=text_to_narrate, voice=voice_param, model="eleven_multilingual_v2")
311
+ with open(audio_filepath, "wb") as f: f.write(audio_bytes)
312
+ logger.info(f"ElevenLabs audio (non-streamed) saved: {audio_filepath}"); return audio_filepath
313
+ else: logger.error("No recognized audio generation method found on ElevenLabs client."); return None
 
 
 
 
 
 
 
 
314
 
 
315
  if audio_stream_method:
316
  voice_param_for_stream = {"voice_id": str(self.elevenlabs_voice_id)}
317
+ if self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'model_dump'): # Pydantic v2 for elevenlabs sdk >=1.0
 
 
 
 
318
  voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
319
+ elif self.elevenlabs_voice_settings and hasattr(self.elevenlabs_voice_settings, 'dict'): # Pydantic v1 for elevenlabs sdk <1.0
320
+ voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings.dict()
321
+ elif self.elevenlabs_voice_settings : voice_param_for_stream["voice_settings"] = self.elevenlabs_voice_settings
322
+
323
+ audio_data_iterator = audio_stream_method(text=text_to_narrate, model_id="eleven_multilingual_v2", **voice_param_for_stream)
 
 
 
324
  with open(audio_filepath, "wb") as f:
325
  for chunk in audio_data_iterator:
326
  if chunk: f.write(chunk)
327
+ logger.info(f"ElevenLabs audio (streamed) saved: {audio_filepath}"); return audio_filepath
328
+ except AttributeError as ae: logger.error(f"AttributeError with ElevenLabs client: {ae}. SDK method/params might be different.", exc_info=True)
329
+ except Exception as e: logger.error(f"Error generating ElevenLabs audio: {e}", exc_info=True)
 
 
 
 
330
  return None
331
 
332
  def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
 
 
 
 
 
 
333
  if not asset_data_list:
334
  logger.warning("No asset data provided for animatic assembly.")
335
  return None
336
 
337
  processed_moviepy_clips = []
338
  narration_audio_clip = None
339
+ final_composite_clip = None # Renamed to avoid conflict in finally block
340
  total_video_duration_from_assets = sum(item.get('duration', 4.5) for item in asset_data_list)
341
  logger.info(f"Assembling animatic from {len(asset_data_list)} assets. Target frame: {self.video_frame_size}. Approx total duration: {total_video_duration_from_assets:.2f}s.")
342
 
343
  for i, asset_info in enumerate(asset_data_list):
344
  asset_path = asset_info.get('path')
345
  asset_type = asset_info.get('type')
346
+ target_scene_duration = asset_info.get('duration', 4.5)
 
347
  scene_num = asset_info.get('scene_num', i + 1)
348
  key_action = asset_info.get('key_action', '')
349
 
350
+ logger.info(f"Processing Scene {scene_num}: Path='{asset_path}', Type='{asset_type}', Target Duration='{target_scene_duration}'s")
351
+
352
  if not (asset_path and os.path.exists(asset_path)):
353
  logger.warning(f"Asset not found for Scene {scene_num}: {asset_path}. Skipping.")
354
  continue
 
356
  logger.warning(f"Scene {scene_num} has invalid duration ({target_scene_duration}s). Skipping.")
357
  continue
358
 
359
+ current_clip_for_scene = None
360
  try:
361
  if asset_type == 'image':
362
+ logger.debug(f"S{scene_num}: Loading image asset from {asset_path}")
363
  pil_img = Image.open(asset_path)
364
+ logger.debug(f"S{scene_num}: Image loaded. Mode: {pil_img.mode}, Size: {pil_img.size}")
365
+
366
+ # Ensure image is RGBA for consistent pasting, then convert to RGB for MoviePy
367
+ if pil_img.mode != 'RGBA':
368
+ pil_img = pil_img.convert('RGBA') # Convert to RGBA to handle transparency uniformly
369
+
370
  img_copy = pil_img.copy()
371
  resample_filter = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else (Image.ANTIALIAS if hasattr(Image, 'ANTIALIAS') else Image.BILINEAR)
372
  img_copy.thumbnail(self.video_frame_size, resample_filter)
373
+ logger.debug(f"S{scene_num}: Image thumbnailed to: {img_copy.size}")
374
+
375
+ # Create an RGBA canvas, paste the (potentially RGBA) image onto it
376
+ canvas_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0)) # Fully transparent
377
  xo, yo = (self.video_frame_size[0] - img_copy.width) // 2, (self.video_frame_size[1] - img_copy.height) // 2
378
+ canvas_rgba.paste(img_copy, (xo, yo), img_copy) # Paste using image's own alpha
379
+ logger.debug(f"S{scene_num}: Image pasted onto RGBA canvas.")
 
380
 
381
+ # Now create a final RGB canvas and paste the RGBA canvas onto it, effectively blending alpha
382
+ final_rgb_canvas = Image.new("RGB", self.video_frame_size, (random.randint(0,5), random.randint(0,5), random.randint(0,5))) # Dark background
383
+ final_rgb_canvas.paste(canvas_rgba, mask=canvas_rgba.split()[3]) # Use alpha channel of canvas_rgba as mask
384
+
385
+ debug_canvas_path = os.path.join(self.output_dir, f"debug_final_rgb_canvas_scene_{scene_num}.png")
386
+ try: final_rgb_canvas.save(debug_canvas_path); logger.info(f"DEBUG: Saved final RGB canvas for scene {scene_num} to {debug_canvas_path}")
387
+ except Exception as e_save_canvas: logger.error(f"DEBUG: Failed to save final RGB canvas for scene {scene_num}: {e_save_canvas}")
388
+
389
+ frame_np = np.array(final_rgb_canvas)
390
+ logger.debug(f"S{scene_num}: Final RGB canvas to NumPy. Shape: {frame_np.shape}, Dtype: {frame_np.dtype}")
391
+ if frame_np.size == 0: logger.error(f"S{scene_num}: NumPy array for ImageClip is empty! Skipping."); continue
392
+
393
+ current_clip_base = ImageClip(frame_np, transparent=False, ismask=False).set_duration(target_scene_duration)
394
+ logger.debug(f"S{scene_num}: Base ImageClip created.")
395
+
396
+ current_clip_for_scene = current_clip_base
397
+ try: # Ken Burns
398
  end_scale = random.uniform(1.03, 1.08)
399
+ current_clip_for_scene = current_clip_base.fx(vfx.resize, lambda t: 1 + (end_scale - 1) * (t / target_scene_duration)).set_position('center')
400
+ logger.debug(f"S{scene_num}: Ken Burns effect applied.")
401
+ except Exception as e_fx: logger.error(f"S{scene_num}: Ken Burns error: {e_fx}. Using static.", exc_info=False); current_clip_for_scene = current_clip_base
 
402
 
403
  elif asset_type == 'video':
404
+ logger.debug(f"S{scene_num}: Loading video asset from {asset_path}")
405
+ # Ensure target_resolution is (height, width) for VideoFileClip resizing parameter
406
+ source_video_clip = VideoFileClip(asset_path, target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None)
407
+
408
+ temp_clip = source_video_clip # Work with a temporary variable
409
  if source_video_clip.duration > target_scene_duration:
410
+ temp_clip = source_video_clip.subclip(0, target_scene_duration)
411
  elif source_video_clip.duration < target_scene_duration:
412
+ if target_scene_duration / source_video_clip.duration > 1.5 and source_video_clip.duration > 0.1:
413
+ temp_clip = source_video_clip.loop(duration=target_scene_duration)
414
+ else: # Play once, MoviePy will pad if needed during concatenation if durations differ
415
+ temp_clip = source_video_clip.set_duration(source_video_clip.duration) # Keep its own duration
416
+ logger.info(f"Video clip for S{scene_num} ({source_video_clip.duration:.2f}s) is shorter than target animatic duration ({target_scene_duration:.2f}s). It will play once at its native length.")
 
 
 
417
 
418
+ # Crucially, ensure the clip used in concatenation has the target_scene_duration
419
+ current_clip_for_scene = temp_clip.set_duration(target_scene_duration)
 
 
420
 
421
+ if current_clip_for_scene.size != list(self.video_frame_size):
422
+ logger.debug(f"S{scene_num}: Resizing video clip from {current_clip_for_scene.size} to {self.video_frame_size}")
423
+ current_clip_for_scene = current_clip_for_scene.resize(self.video_frame_size)
424
 
425
+ # Only close source_video_clip if it's different from what we are keeping (e.g., after subclip)
426
+ # And if it's not the same object as current_clip_for_scene
427
+ if source_video_clip is not current_clip_for_scene and hasattr(source_video_clip, 'close'):
428
  source_video_clip.close()
429
+ logger.debug(f"S{scene_num}: Video asset processed. Final duration for scene: {current_clip_for_scene.duration:.2f}s")
430
 
431
+ else: logger.warning(f"S{scene_num}: Unknown asset type '{asset_type}'. Skipping."); continue
432
 
433
+ if current_clip_for_scene and key_action: # Add text overlay
434
+ logger.debug(f"S{scene_num}: Adding text overlay: '{key_action}'")
 
 
 
 
435
  text_overlay_duration = min(target_scene_duration - 0.5, target_scene_duration * 0.8) if target_scene_duration > 0.5 else target_scene_duration
436
  text_overlay_start = (target_scene_duration - text_overlay_duration) / 2.0
437
  if text_overlay_duration > 0:
 
441
  method='caption', align='West', size=(self.video_frame_size[0] * 0.9, None),
442
  kerning=-1, stroke_color='black', stroke_width=1.5
443
  ).set_duration(text_overlay_duration).set_start(text_overlay_start).set_position(('center', 0.92), relative=True)
444
+ current_clip_for_scene = CompositeVideoClip([current_clip_for_scene, txt_clip], size=self.video_frame_size, use_bgclip=True)
445
+ logger.debug(f"S{scene_num}: Text overlay composited.")
446
 
447
+ if current_clip_for_scene: processed_moviepy_clips.append(current_clip_for_scene); logger.info(f"S{scene_num}: Asset successfully processed and added to final list.")
448
+ except Exception as e: logger.error(f"Error processing asset for Scene {scene_num} ({asset_path}): {e}", exc_info=True)
449
+ finally: # Ensure individual clips are closed if they were opened and an error occurred mid-processing
450
+ if current_clip_for_scene and asset_type == 'video' and hasattr(current_clip_for_scene, 'reader') and current_clip_for_scene.reader:
451
+ if hasattr(current_clip_for_scene, 'close'): current_clip_for_scene.close()
452
 
 
 
 
 
 
 
 
453
 
454
+ if not processed_moviepy_clips: logger.warning("No MoviePy clips processed. Aborting animatic assembly."); return None
455
+
456
  transition_duration = 0.75
457
  try:
458
+ if len(processed_moviepy_clips) > 1: final_composite_clip = concatenate_videoclips(processed_moviepy_clips, padding=-transition_duration, method="compose")
459
+ elif processed_moviepy_clips: final_composite_clip = processed_moviepy_clips[0]
460
+ else: logger.error("No clips for final concatenation."); return None
 
 
 
 
461
 
462
+ if final_composite_clip.duration > transition_duration * 2: final_composite_clip = final_composite_clip.fx(vfx.fadein, transition_duration).fx(vfx.fadeout, transition_duration)
463
+ elif final_composite_clip.duration > 0: final_composite_clip = final_composite_clip.fx(vfx.fadein, min(transition_duration, final_composite_clip.duration/2.0))
464
 
465
+ if overall_narration_path and os.path.exists(overall_narration_path) and final_composite_clip.duration > 0:
 
 
 
 
 
466
  try:
467
  narration_audio_clip = AudioFileClip(overall_narration_path)
468
+ if narration_audio_clip.duration < final_composite_clip.duration:
469
  logger.info(f"Narration ({narration_audio_clip.duration:.2f}s) shorter than visuals ({final_composite_clip.duration:.2f}s). Trimming video.")
470
  final_composite_clip = final_composite_clip.subclip(0, narration_audio_clip.duration)
471
+ final_composite_clip = final_composite_clip.set_audio(narration_audio_clip); logger.info("Overall narration added.")
 
 
 
 
472
  except Exception as e: logger.error(f"Adding narration error: {e}", exc_info=True)
473
+ elif final_composite_clip.duration <= 0 : logger.warning("Video has no duration. Audio not added.")
474
 
475
  if final_composite_clip and final_composite_clip.duration > 0:
476
  output_path = os.path.join(self.output_dir, output_filename)
477
  logger.info(f"Writing final animatic: {output_path} (Duration: {final_composite_clip.duration:.2f}s)")
478
+ final_composite_clip.write_videofile(output_path, fps=fps, codec='libx264', preset='medium', audio_codec='aac',
479
+ temp_audiofile=os.path.join(self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'),
480
+ remove_temp=True, threads=os.cpu_count() or 2, logger='bar', bitrate="5000k")
 
 
481
  logger.info(f"Animatic created: {output_path}"); return output_path
482
+ else: logger.error("Final animatic clip invalid. Not writing file."); return None
483
  except Exception as e: logger.error(f"Animatic writing error: {e}", exc_info=True); return None
484
  finally:
485
+ for clip_obj in processed_moviepy_clips:
486
+ if hasattr(clip_obj, 'close'): clip_obj.close()
487
  if narration_audio_clip and hasattr(narration_audio_clip, 'close'): narration_audio_clip.close()
488
  if final_composite_clip and hasattr(final_composite_clip, 'close'): final_composite_clip.close()