mgbam commited on
Commit
d73d823
·
verified ·
1 Parent(s): ae4ade9

Update core/visual_engine.py

Browse files
Files changed (1) hide show
  1. core/visual_engine.py +770 -273
core/visual_engine.py CHANGED
@@ -12,20 +12,32 @@ import random
12
  import logging
13
 
14
  # --- MoviePy Imports ---
15
- from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
16
- CompositeVideoClip, AudioFileClip)
 
 
 
 
 
 
17
  import moviepy.video.fx.all as vfx
18
 
19
  # --- MONKEY PATCH for Pillow/MoviePy compatibility ---
20
  try:
21
- if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
22
- if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
23
- elif hasattr(Image, 'LANCZOS'): # Pillow 8
24
- if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
25
- elif not hasattr(Image, 'ANTIALIAS'): # Fallback if no common resampling attributes found
26
- print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different.")
 
 
 
 
27
  except Exception as e_monkey_patch:
28
- print(f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}")
 
 
29
 
30
  logger = logging.getLogger(__name__)
31
  # Consider setting level in main app if not already configured:
@@ -39,154 +51,225 @@ VoiceSettings = None
39
  try:
40
  from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
41
  from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
 
42
  ElevenLabsAPIClient = ImportedElevenLabsClient
43
  Voice = ImportedVoice
44
  VoiceSettings = ImportedVoiceSettings
45
  ELEVENLABS_CLIENT_IMPORTED = True
46
  logger.info("ElevenLabs client components imported successfully.")
47
  except ImportError:
48
- logger.warning("ElevenLabs SDK not found (pip install elevenlabs). Audio generation will be disabled.")
 
 
49
  except Exception as e_eleven_import:
50
- logger.warning(f"Error importing ElevenLabs client components: {e_eleven_import}. Audio generation disabled.")
 
 
51
 
52
  RUNWAYML_SDK_IMPORTED = False
53
- RunwayMLAPIClient = None # Using a more specific name for the client class
54
  try:
55
- from runwayml import RunwayML as ImportedRunwayMLClient # Actual SDK import
 
56
  RunwayMLAPIClient = ImportedRunwayMLClient
57
  RUNWAYML_SDK_IMPORTED = True
58
  logger.info("RunwayML SDK imported successfully.")
59
  except ImportError:
60
- logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
 
 
61
  except Exception as e_runway_sdk_import:
62
- logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk_import}. RunwayML features disabled.")
 
 
63
 
64
 
65
  class VisualEngine:
66
- DEFAULT_FONT_SIZE_PIL = 10 # For default Pillow font
67
- PREFERRED_FONT_SIZE_PIL = 20 # For custom font
68
  VIDEO_OVERLAY_FONT_SIZE = 30
69
- VIDEO_OVERLAY_FONT_COLOR = 'white'
70
  # Standard font names ImageMagick (used by TextClip) is likely to find in Linux containers
71
- DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'
72
- PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold' # Often available
73
 
74
- def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
 
 
75
  self.output_dir = output_dir
76
  os.makedirs(self.output_dir, exist_ok=True)
77
 
78
- self.font_filename_pil = "DejaVuSans-Bold.ttf" # A more standard Linux font
79
  font_paths_to_try = [
80
- self.font_filename_pil, # If in working dir or PATH
81
  f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil}",
82
- f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", # Alternative
83
- f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS fallback
84
- f"C:/Windows/Fonts/arial.ttf", # Windows fallback
85
- f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf" # User's previous custom path
86
  ]
87
- self.font_path_pil_resolved = next((p for p in font_paths_to_try if os.path.exists(p)), None)
88
-
89
- self.font_pil = ImageFont.load_default() # Default
 
 
90
  self.current_font_size_pil = self.DEFAULT_FONT_SIZE_PIL
91
 
92
  if self.font_path_pil_resolved:
93
  try:
94
- self.font_pil = ImageFont.truetype(self.font_path_pil_resolved, self.PREFERRED_FONT_SIZE_PIL)
 
 
95
  self.current_font_size_pil = self.PREFERRED_FONT_SIZE_PIL
96
- logger.info(f"Pillow font loaded: {self.font_path_pil_resolved} at size {self.current_font_size_pil}.")
 
 
97
  # Determine MoviePy font based on loaded PIL font
98
  if "dejavu" in self.font_path_pil_resolved.lower():
99
- self.video_overlay_font = 'DejaVu-Sans-Bold'
100
  elif "liberation" in self.font_path_pil_resolved.lower():
101
- self.video_overlay_font = 'Liberation-Sans-Bold'
102
- else: # Fallback if custom font doesn't have an obvious ImageMagick name
103
  self.video_overlay_font = self.DEFAULT_MOVIEPY_FONT
104
  except IOError as e_font_load:
105
- logger.error(f"Pillow font loading IOError for '{self.font_path_pil_resolved}': {e_font_load}. Using default.")
 
 
106
  else:
107
  logger.warning("Custom Pillow font not found. Using default.")
108
 
109
- self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
110
- self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
 
 
111
  self.video_frame_size = (1280, 720)
112
 
113
- self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None
 
 
114
  self.elevenlabs_voice_id = default_elevenlabs_voice_id
115
  if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
116
- self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
117
- else: self.elevenlabs_voice_settings = None
 
 
 
 
 
 
118
 
119
- self.pexels_api_key = None; self.USE_PEXELS = False
120
- self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_client_instance = None # More specific name
 
 
 
121
 
122
  # Attempt to initialize Runway client if SDK is present and env var might be set
123
- if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient and os.getenv("RUNWAYML_API_SECRET"):
 
 
 
 
124
  try:
125
- self.runway_ml_client_instance = RunwayMLAPIClient() # SDK uses env var
126
- self.USE_RUNWAYML = True # Assume enabled if client initializes
127
- logger.info("RunwayML Client initialized from RUNWAYML_API_SECRET env var at startup.")
 
 
128
  except Exception as e_runway_init_startup:
129
- logger.error(f"Initial RunwayML client init failed (env var RUNWAYML_API_SECRET might be invalid): {e_runway_init_startup}")
 
 
130
  self.USE_RUNWAYML = False
131
-
132
  logger.info("VisualEngine initialized.")
133
 
134
  # --- API Key Setters ---
135
  def set_openai_api_key(self, api_key):
136
- self.openai_api_key = api_key; self.USE_AI_IMAGE_GENERATION = bool(api_key)
137
- logger.info(f"DALL-E ({self.dalle_model}) status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
 
 
 
138
 
139
  def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
140
  self.elevenlabs_api_key = api_key
141
- if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
 
142
  if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
143
  try:
144
  self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
145
  self.USE_ELEVENLABS = bool(self.elevenlabs_client)
146
- logger.info(f"ElevenLabs Client status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})")
 
 
147
  except Exception as e:
148
- logger.error(f"ElevenLabs client initialization error: {e}. Service Disabled.", exc_info=True)
149
- self.USE_ELEVENLABS = False; self.elevenlabs_client = None
 
 
 
 
150
  else:
151
  self.USE_ELEVENLABS = False
152
- logger.info(f"ElevenLabs Service Disabled (API key not provided or SDK import issue).")
 
 
153
 
154
  def set_pexels_api_key(self, api_key):
155
- self.pexels_api_key = api_key; self.USE_PEXELS = bool(api_key)
156
- logger.info(f"Pexels Search status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
 
 
 
157
 
158
  def set_runway_api_key(self, api_key):
159
- self.runway_api_key = api_key # Store key regardless for potential direct HTTP use
160
  if api_key:
161
  if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
162
- if not self.runway_ml_client_instance: # If not already initialized by env var
163
  try:
164
  # The RunwayML Python SDK expects the API key via the RUNWAYML_API_SECRET env var.
165
  # If it's not set, we set it temporarily for client initialization.
166
  original_env_secret = os.getenv("RUNWAYML_API_SECRET")
167
  if not original_env_secret:
168
- logger.info("Temporarily setting RUNWAYML_API_SECRET from provided key for SDK client init.")
 
 
169
  os.environ["RUNWAYML_API_SECRET"] = api_key
170
-
171
  self.runway_ml_client_instance = RunwayMLAPIClient()
172
- self.USE_RUNWAYML = True # SDK client successfully initialized
173
- logger.info("RunwayML Client initialized successfully using provided API key.")
 
 
174
 
175
- if not original_env_secret: # Clean up if we set it
176
  del os.environ["RUNWAYML_API_SECRET"]
177
- logger.info("Cleared temporary RUNWAYML_API_SECRET env var.")
 
 
178
 
179
  except Exception as e_client_init:
180
- logger.error(f"RunwayML Client initialization via set_runway_api_key failed: {e_client_init}", exc_info=True)
181
- self.USE_RUNWAYML = False; self.runway_ml_client_instance = None
182
- else: # Client was already initialized (likely via env var during __init__)
 
 
 
 
183
  self.USE_RUNWAYML = True
184
- logger.info("RunwayML Client was already initialized (likely from env var). API key stored.")
185
- else: # SDK not imported
186
- logger.warning("RunwayML SDK not imported. API key stored, but integration requires SDK. Service effectively disabled.")
 
 
 
 
187
  self.USE_RUNWAYML = False
188
- else: # No API key provided
189
- self.USE_RUNWAYML = False; self.runway_ml_client_instance = None
 
190
  logger.info("RunwayML Service Disabled (no API key provided).")
191
 
192
  # --- Helper Methods ---
@@ -197,91 +280,154 @@ class VisualEngine:
197
  ext = os.path.splitext(image_path)[1].lower()
198
  mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg"}
199
  mime_type = mime_map.get(ext, "application/octet-stream")
200
- if mime_type == "application/octet-stream": logger.warning(f"Could not determine MIME type for {image_path}, using default.")
201
-
 
 
 
202
  with open(image_path, "rb") as image_file:
203
- encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
204
  data_uri = f"data:{mime_type};base64,{encoded_string}"
205
- logger.debug(f"Generated data URI for {os.path.basename(image_path)} (first 100 chars): {data_uri[:100]}...")
 
 
206
  return data_uri
207
  except FileNotFoundError:
208
  logger.error(f"Image file not found at {image_path} for data URI conversion.")
209
  return None
210
  except Exception as e:
211
- logger.error(f"Error converting image {image_path} to data URI: {e}", exc_info=True)
 
 
212
  return None
213
 
214
  def _map_resolution_to_runway_ratio(self, width, height):
215
  ratio_str = f"{width}:{height}"
216
  # Gen-4 supports: "1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"
217
- supported_ratios_gen4 = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"]
 
 
 
 
 
 
 
218
  if ratio_str in supported_ratios_gen4:
219
  return ratio_str
220
  # Fallback or find closest - for now, strict matching or default
221
- logger.warning(f"Resolution {ratio_str} not directly in Gen-4 supported list. Defaulting to 1280:720.")
 
 
222
  return "1280:720"
223
 
224
  def _get_text_dimensions(self, text_content, font_object):
225
  # (Robust version from before)
226
- default_char_height = getattr(font_object, 'size', self.current_font_size_pil)
227
- if not text_content: return 0, default_char_height
 
228
  try:
229
- if hasattr(font_object,'getbbox'):
230
- bbox=font_object.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
 
 
231
  return w, h if h > 0 else default_char_height
232
- elif hasattr(font_object,'getsize'):
233
- w,h=font_object.getsize(text_content)
234
  return w, h if h > 0 else default_char_height
235
- else: return int(len(text_content)*default_char_height*0.6),int(default_char_height*1.2)
236
- except Exception as e: logger.warning(f"Error in _get_text_dimensions: {e}"); return int(len(text_content)*self.current_font_size_pil*0.6),int(self.current_font_size_pil*1.2)
 
 
 
 
 
 
 
 
 
237
 
238
  def _create_placeholder_image_content(self, text_description, filename, size=None):
239
  # (Corrected version from previous response)
240
- if size is None: size = self.video_frame_size
241
- img = Image.new('RGB', size, color=(20, 20, 40)); d = ImageDraw.Draw(img); padding = 25
242
- max_w = size[0] - (2 * padding); lines = []
243
- if not text_description: text_description = "(Placeholder Image)"
244
- words = text_description.split(); current_line_text = ""
 
 
 
 
 
 
245
  for word_idx, word in enumerate(words):
246
  prospective_addition = word + (" " if word_idx < len(words) - 1 else "")
247
  test_line_text = current_line_text + prospective_addition
248
  current_w, _ = self._get_text_dimensions(test_line_text, self.font_pil)
249
- if current_w == 0 and test_line_text.strip(): current_w = len(test_line_text) * (self.current_font_size_pil * 0.6) # Estimate
 
250
 
251
- if current_w <= max_w: current_line_text = test_line_text
 
252
  else:
253
- if current_line_text.strip(): lines.append(current_line_text.strip())
254
- current_line_text = prospective_addition # Start new line
255
- if current_line_text.strip(): lines.append(current_line_text.strip())
 
 
256
 
257
  if not lines and text_description:
258
- avg_char_w, _ = self._get_text_dimensions("W", self.font_pil); avg_char_w = avg_char_w or (self.current_font_size_pil * 0.6)
 
259
  chars_per_line = int(max_w / avg_char_w) if avg_char_w > 0 else 20
260
- lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
261
- elif not lines: lines.append("(Placeholder Error)")
 
 
 
 
 
 
 
 
 
 
 
 
 
262
 
263
- _, single_line_h = self._get_text_dimensions("Ay", self.font_pil); single_line_h = single_line_h if single_line_h > 0 else self.current_font_size_pil + 2
264
- max_lines = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1
265
- max_lines = max(1, max_lines) # Ensure at least one line
266
-
267
  y_pos = padding + (size[1] - (2 * padding) - max_lines * (single_line_h + 2)) / 2.0
268
  for i in range(max_lines):
269
- line_text = lines[i]; line_w, _ = self._get_text_dimensions(line_text, self.font_pil)
270
- if line_w == 0 and line_text.strip(): line_w = len(line_text) * (self.current_font_size_pil * 0.6)
 
 
271
  x_pos = (size[0] - line_w) / 2.0
272
- try: d.text((x_pos, y_pos), line_text, font=self.font_pil, fill=(200, 200, 180))
273
- except Exception as e_draw: logger.error(f"Pillow d.text error: {e_draw} for '{line_text}'")
 
 
274
  y_pos += single_line_h + 2
275
  if i == 6 and max_lines > 7:
276
- try: d.text((x_pos, y_pos), "...", font=self.font_pil, fill=(200, 200, 180))
277
- except Exception as e_elip: logger.error(f"Pillow d.text ellipsis error: {e_elip}"); break
 
 
 
 
278
  filepath = os.path.join(self.output_dir, filename)
279
- try: img.save(filepath); return filepath
280
- except Exception as e_save: logger.error(f"Saving placeholder image '{filepath}' error: {e_save}", exc_info=True); return None
 
 
 
 
 
 
281
 
282
  def _search_pexels_image(self, query, output_filename_base):
283
  # <<< THIS IS THE CORRECTED METHOD >>>
284
- if not self.USE_PEXELS or not self.pexels_api_key: return None
 
285
  headers = {"Authorization": self.pexels_api_key}
286
  params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
287
  base_name_for_pexels, _ = os.path.splitext(output_filename_base)
@@ -291,48 +437,77 @@ class VisualEngine:
291
  logger.info(f"Pexels: Searching for '{query}'")
292
  effective_query = " ".join(query.split()[:5])
293
  params["query"] = effective_query
294
- response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
 
 
295
  response.raise_for_status()
296
  data = response.json()
297
  if data.get("photos") and len(data["photos"]) > 0:
298
  photo_details = data["photos"][0]
299
  photo_url = photo_details.get("src", {}).get("large2x")
300
- if not photo_url: logger.warning(f"Pexels: 'large2x' URL missing for '{effective_query}'. Details: {photo_details}"); return None
301
- image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
 
 
 
 
 
302
  img_data_pil = Image.open(io.BytesIO(image_response.content))
303
- if img_data_pil.mode != 'RGB': img_data_pil = img_data_pil.convert('RGB')
304
- img_data_pil.save(filepath); logger.info(f"Pexels: Image saved to {filepath}"); return filepath
305
- else: logger.info(f"Pexels: No photos for '{effective_query}'."); return None
306
- except requests.exceptions.RequestException as e_req: logger.error(f"Pexels: RequestException for '{query}': {e_req}", exc_info=False); return None # Less verbose for network
307
- except Exception as e: logger.error(f"Pexels: General error for '{query}': {e}", exc_info=True); return None
 
 
 
 
 
 
 
 
 
308
 
309
  # --- RunwayML Video Generation (Gen-4 Aligned with SDK) ---
310
- def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
 
 
 
 
 
 
311
  if not self.USE_RUNWAYML or not self.runway_ml_client_instance:
312
  logger.warning("RunwayML not enabled or client not initialized. Cannot generate video clip.")
313
  return None
314
  if not input_image_path or not os.path.exists(input_image_path):
315
- logger.error(f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}")
 
 
316
  return None
317
 
318
  image_data_uri = self._image_to_data_uri(input_image_path)
319
- if not image_data_uri: return None
 
 
 
 
 
 
320
 
321
- runway_duration = 10 if target_duration_seconds >= 8 else 5 # Map to 5s or 10s for Gen-4
322
- runway_ratio_str = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1])
323
-
324
  # Use a more descriptive output filename for Runway videos
325
  base_name_for_runway, _ = os.path.splitext(scene_identifier_filename_base)
326
  output_video_filename = base_name_for_runway + f"_runway_gen4_d{runway_duration}s.mp4"
327
  output_video_filepath = os.path.join(self.output_dir, output_video_filename)
328
 
329
- logger.info(f"Initiating Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', image='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
 
 
330
  try:
331
  # Using the RunwayML Python SDK structure
332
  task_submission = self.runway_ml_client_instance.image_to_video.create(
333
- model='gen4_turbo',
334
  prompt_image=image_data_uri,
335
- prompt_text=text_prompt_for_motion, # This is the motion prompt
336
  duration=runway_duration,
337
  ratio=runway_ratio_str,
338
  # seed=random.randint(0, 4294967295), # Optional: for reproducibility
@@ -342,7 +517,7 @@ class VisualEngine:
342
  logger.info(f"Runway Gen-4 task created with ID: {task_id}. Polling for completion...")
343
 
344
  poll_interval_seconds = 10
345
- max_polling_duration_seconds = 6 * 60 # 6 minutes
346
  start_time = time.time()
347
 
348
  while time.time() - start_time < max_polling_duration_seconds:
@@ -350,211 +525,533 @@ class VisualEngine:
350
  task_details = self.runway_ml_client_instance.tasks.retrieve(id=task_id)
351
  logger.info(f"Runway task {task_id} status: {task_details.status}")
352
 
353
- if task_details.status == 'SUCCEEDED':
354
  # Determine output URL (this structure might vary based on SDK version)
355
  output_url = None
356
- if hasattr(task_details, 'output') and task_details.output and hasattr(task_details.output, 'url'):
 
 
357
  output_url = task_details.output.url
358
- elif hasattr(task_details, 'artifacts') and task_details.artifacts and isinstance(task_details.artifacts, list) and len(task_details.artifacts) > 0:
 
 
 
 
 
359
  first_artifact = task_details.artifacts[0]
360
- if hasattr(first_artifact, 'url'): output_url = first_artifact.url
361
- elif hasattr(first_artifact, 'download_url'): output_url = first_artifact.download_url
362
-
 
 
363
  if not output_url:
364
- logger.error(f"Runway task {task_id} SUCCEEDED, but no output URL found. Details: {vars(task_details) if hasattr(task_details,'__dict__') else str(task_details)}")
 
 
365
  return None
366
 
367
  logger.info(f"Runway task {task_id} SUCCEEDED. Downloading video from: {output_url}")
368
  video_response = requests.get(output_url, stream=True, timeout=300)
369
  video_response.raise_for_status()
370
- with open(output_video_filepath, 'wb') as f:
371
- for chunk in video_response.iter_content(chunk_size=8192): f.write(chunk)
372
- logger.info(f"Runway Gen-4 video successfully downloaded to: {output_video_filepath}")
 
 
 
373
  return output_video_filepath
374
-
375
- elif task_details.status in ['FAILED', 'ABORTED', 'ERROR']: # Added ERROR
376
- error_msg = getattr(task_details,'error_message',None) or getattr(getattr(task_details,'output',None),'error', "Unknown error from Runway task.")
377
- logger.error(f"Runway task {task_id} final status: {task_details.status}. Error: {error_msg}")
 
 
 
 
 
378
  return None
379
-
380
- logger.warning(f"Runway task {task_id} timed out polling after {max_polling_duration_seconds} seconds.")
 
 
381
  return None
382
 
383
- except AttributeError as ae: # If SDK methods are not as expected
384
- logger.error(f"AttributeError with RunwayML SDK: {ae}. Ensure SDK is up to date and methods/attributes match documentation.", exc_info=True)
 
 
 
385
  return None
386
  except Exception as e_runway_call:
387
- logger.error(f"General error during Runway Gen-4 API call or processing: {e_runway_call}", exc_info=True)
 
 
 
388
  return None
389
 
390
  def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
391
  # (Keeping as before)
392
- if size is None: size = self.video_frame_size; fp = os.path.join(self.output_dir, filename); tc = None
393
- try: tc = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=size, method='caption').set_duration(duration); tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2); logger.info(f"Generic placeholder video: {fp}"); return fp
394
- except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395
  finally:
396
- if tc and hasattr(tc, 'close'): tc.close()
 
397
 
398
  # --- generate_scene_asset (Main asset generation logic using Runway Gen-4 workflow) ---
399
- def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
400
- scene_data, scene_identifier_filename_base,
401
- generate_as_video_clip=False, runway_target_duration=5):
 
 
 
 
 
 
402
  # (Logic updated for Runway Gen-4 workflow)
403
  base_name, _ = os.path.splitext(scene_identifier_filename_base)
404
- asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
 
 
 
 
 
 
405
  input_image_for_runway_path = None
406
  # Use a distinct name for the base image if it's only an intermediate step for video
407
  base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
408
  base_image_filepath = os.path.join(self.output_dir, base_image_filename)
409
-
410
  # STEP 1: Generate/acquire the base image
411
  # Try DALL-E
412
  if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
413
- # ... (DALL-E logic as in previous full rewrite - condensed for brevity here)
414
- max_r, att_n = 2,0;
415
  for att_n in range(max_r):
416
- try:logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...");cl=openai.OpenAI(api_key=self.openai_api_key,timeout=90.0);r=cl.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid");iu=r.data[0].url;rp=getattr(r.data[0],'revised_prompt',None);
417
- if rp:logger.info(f"DALL-E revised: {rp[:70]}...");ir=requests.get(iu,timeout=120);ir.raise_for_status();id_img=Image.open(io.BytesIO(ir.content));
418
- if id_img.mode!='RGB':id_img=id_img.convert('RGB');id_img.save(base_image_filepath);logger.info(f"DALL-E base img saved: {base_image_filepath}");input_image_for_runway_path=base_image_filepath;asset_info={'path':base_image_filepath,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':rp};break
419
- except openai.RateLimitError as e:logger.warning(f"OpenAI RateLimit {att_n+1}:{e}.Retry...");time.sleep(5*(att_n+1));asset_info['error_message']=str(e)
420
- except Exception as e:logger.error(f"DALL-E base img error:{e}",exc_info=True);asset_info['error_message']=str(e);break
421
- if asset_info['error']:logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")
422
-
423
- if asset_info['error'] and self.USE_PEXELS: # Pexels Fallback
424
- logger.info("Trying Pexels for base img.");pqt=scene_data.get('pexels_search_query_감독',f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}");pp=self._search_pexels_image(pqt,base_image_filename); # Use base_image_filename
425
- if pp:input_image_for_runway_path=pp;asset_info={'path':pp,'type':'image','error':False,'prompt_used':f"Pexels:{pqt}"}
426
- else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Pexels failed for base.").strip()
427
-
428
- if asset_info['error']: # Placeholder Fallback
429
- logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ppt=asset_info.get('prompt_used',image_generation_prompt_text);php=self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...",base_image_filename); # Use base_image_filename
430
- if php:input_image_for_runway_path=php;asset_info={'path':php,'type':'image','error':False,'prompt_used':ppt}
431
- else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Base placeholder failed.").strip()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432
 
433
  # STEP 2: If video clip is requested, use the generated base image with RunwayML
434
  if generate_as_video_clip:
435
  if not input_image_for_runway_path:
436
- logger.error("RunwayML video: base image generation failed entirely. Cannot proceed.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"")+" Base img completely failed, Runway abort.").strip();asset_info['type']='none';return asset_info
437
- if self.USE_RUNWAYML: # This check is now more about if the service is generally enabled
438
- video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,input_image_for_runway_path,base_name,runway_target_duration) # Pass base_name for runway output filename
439
- if video_path and os.path.exists(video_path):asset_info={'path':video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':input_image_for_runway_path}
440
- else:logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML video step failed; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
441
- else:logger.warning("RunwayML selected but not enabled/client not ready. Use base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442
  return asset_info
443
 
444
  def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
445
  # (Keep as before - robust enough)
446
- if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename)
447
- try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None
448
- if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()")
449
- elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()")
450
- elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2");
451
- with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
452
- else:logger.error("No 11L audio method.");return None
453
- if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
454
- if self.elevenlabs_voice_settings:
455
- if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
456
- elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
457
- else:vps["voice_settings"]=self.elevenlabs_voice_settings
458
- adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
459
- with open(afp,"wb")as f:
460
- for c in adi:
461
- if c:f.write(c)
462
- logger.info(f"11L audio (stream): {afp}");return afp
463
- except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464
 
465
  # --- assemble_animatic_from_assets (Still contains crucial debug saves for blank video issue) ---
466
- def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
 
 
467
  # (Keep the version with robust image processing, C-contiguous arrays, debug saves, and pix_fmt)
468
- if not asset_data_list: logger.warning("No assets for animatic."); return None
469
- processed_clips = []; narration_clip = None; final_clip = None
 
 
 
 
 
470
  logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
471
 
472
  for i, asset_info in enumerate(asset_data_list):
473
- asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5)
474
- scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '')
 
 
 
475
  logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
476
 
477
- if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue
478
- if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue
 
 
 
 
479
 
480
  current_scene_mvpy_clip = None
481
  try:
482
- if asset_type == 'image':
483
- pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
484
- img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
485
- thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf)
486
- cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2
487
- cv_rgba.paste(thumb,(xo,yo),thumb)
488
- final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3])
489
- dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
490
- frame_np = np.array(final_rgb_pil,dtype=np.uint8);
491
- if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8)
492
- logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
493
- if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue
494
- clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur)
495
- mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496
  clip_fx = clip_base
497
- try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center')
498
- except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False)
 
 
 
 
 
499
  current_scene_mvpy_clip = clip_fx
500
- elif asset_type == 'video':
501
- src_clip=None
 
502
  try:
503
- src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
504
- tmp_clip=src_clip
505
- if src_clip.duration!=scene_dur:
506
- if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur)
 
 
 
 
 
 
 
 
 
 
507
  else:
508
- if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur)
509
- else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
510
- current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur)
511
- if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
512
- except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue
 
 
 
 
 
 
 
 
513
  finally:
514
- if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close()
515
- else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue
516
-
 
 
 
517
  if current_scene_mvpy_clip and key_action:
518
  try:
519
- to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
520
- to_start=0.25
 
 
 
 
521
  if to_dur > 0:
522
- txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True)
523
- current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True)
524
- else: logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
525
- except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True)
526
- if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
527
- except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528
  finally:
529
- if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
530
- try: current_scene_mvpy_clip.close()
531
- except: pass
 
 
532
 
533
- if not processed_clips:logger.warning("No clips processed. Abort.");return None
534
- td=0.75
 
 
 
535
  try:
536
- logger.info(f"Concatenating {len(processed_clips)} clips.");
537
- if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose")
538
- elif processed_clips:final_clip=processed_clips[0]
539
- if not final_clip:logger.error("Concatenation failed.");return None
 
 
 
 
 
540
  logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
541
- if td>0 and final_clip.duration>0:
542
- if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td)
543
- else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0))
544
- if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0:
545
- try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.")
546
- except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True)
547
- elif final_clip.duration<=0:logger.warning("Video no duration. No audio.")
548
- if final_clip and final_clip.duration>0:
549
- op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
550
- final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
551
- logger.info(f"Video created:{op}");return op
552
- else:logger.error("Final clip invalid. No write.");return None
553
- except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554
  finally:
555
  logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
556
  all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
557
  for clip_obj_to_close in all_clips_to_close:
558
- if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'):
559
- try: clip_obj_to_close.close()
560
- except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}")
 
 
 
 
 
12
  import logging
13
 
14
  # --- MoviePy Imports ---
15
+ from moviepy.editor import (
16
+ ImageClip,
17
+ VideoFileClip,
18
+ concatenate_videoclips,
19
+ TextClip,
20
+ CompositeVideoClip,
21
+ AudioFileClip,
22
+ )
23
  import moviepy.video.fx.all as vfx
24
 
25
  # --- MONKEY PATCH for Pillow/MoviePy compatibility ---
26
  try:
27
+ if hasattr(Image, "Resampling") and hasattr(Image.Resampling, "LANCZOS"): # Pillow 9+
28
+ if not hasattr(Image, "ANTIALIAS"):
29
+ Image.ANTIALIAS = Image.Resampling.LANCZOS
30
+ elif hasattr(Image, "LANCZOS"): # Pillow 8
31
+ if not hasattr(Image, "ANTIALIAS"):
32
+ Image.ANTIALIAS = Image.LANCZOS
33
+ elif not hasattr(Image, "ANTIALIAS"): # Fallback if no common resampling attributes found
34
+ print(
35
+ "WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different."
36
+ )
37
  except Exception as e_monkey_patch:
38
+ print(
39
+ f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}"
40
+ )
41
 
42
  logger = logging.getLogger(__name__)
43
  # Consider setting level in main app if not already configured:
 
51
  try:
52
  from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
53
  from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
54
+
55
  ElevenLabsAPIClient = ImportedElevenLabsClient
56
  Voice = ImportedVoice
57
  VoiceSettings = ImportedVoiceSettings
58
  ELEVENLABS_CLIENT_IMPORTED = True
59
  logger.info("ElevenLabs client components imported successfully.")
60
  except ImportError:
61
+ logger.warning(
62
+ "ElevenLabs SDK not found (pip install elevenlabs). Audio generation will be disabled."
63
+ )
64
  except Exception as e_eleven_import:
65
+ logger.warning(
66
+ f"Error importing ElevenLabs client components: {e_eleven_import}. Audio generation disabled."
67
+ )
68
 
69
  RUNWAYML_SDK_IMPORTED = False
70
+ RunwayMLAPIClient = None # Using a more specific name for the client class
71
  try:
72
+ from runwayml import RunwayML as ImportedRunwayMLClient # Actual SDK import
73
+
74
  RunwayMLAPIClient = ImportedRunwayMLClient
75
  RUNWAYML_SDK_IMPORTED = True
76
  logger.info("RunwayML SDK imported successfully.")
77
  except ImportError:
78
+ logger.warning(
79
+ "RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled."
80
+ )
81
  except Exception as e_runway_sdk_import:
82
+ logger.warning(
83
+ f"Error importing RunwayML SDK: {e_runway_sdk_import}. RunwayML features disabled."
84
+ )
85
 
86
 
87
  class VisualEngine:
88
+ DEFAULT_FONT_SIZE_PIL = 10 # For default Pillow font
89
+ PREFERRED_FONT_SIZE_PIL = 20 # For custom font
90
  VIDEO_OVERLAY_FONT_SIZE = 30
91
+ VIDEO_OVERLAY_FONT_COLOR = "white"
92
  # Standard font names ImageMagick (used by TextClip) is likely to find in Linux containers
93
+ DEFAULT_MOVIEPY_FONT = "DejaVu-Sans-Bold"
94
+ PREFERRED_MOVIEPY_FONT = "Liberation-Sans-Bold" # Often available
95
 
96
+ def __init__(
97
+ self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"
98
+ ):
99
  self.output_dir = output_dir
100
  os.makedirs(self.output_dir, exist_ok=True)
101
 
102
+ self.font_filename_pil = "DejaVuSans-Bold.ttf" # A more standard Linux font
103
  font_paths_to_try = [
104
+ self.font_filename_pil, # If in working dir or PATH
105
  f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil}",
106
+ f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", # Alternative
107
+ f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS fallback
108
+ f"C:/Windows/Fonts/arial.ttf", # Windows fallback
109
+ f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf", # User's previous custom path
110
  ]
111
+ self.font_path_pil_resolved = next(
112
+ (p for p in font_paths_to_try if os.path.exists(p)), None
113
+ )
114
+
115
+ self.font_pil = ImageFont.load_default() # Default
116
  self.current_font_size_pil = self.DEFAULT_FONT_SIZE_PIL
117
 
118
  if self.font_path_pil_resolved:
119
  try:
120
+ self.font_pil = ImageFont.truetype(
121
+ self.font_path_pil_resolved, self.PREFERRED_FONT_SIZE_PIL
122
+ )
123
  self.current_font_size_pil = self.PREFERRED_FONT_SIZE_PIL
124
+ logger.info(
125
+ f"Pillow font loaded: {self.font_path_pil_resolved} at size {self.current_font_size_pil}."
126
+ )
127
  # Determine MoviePy font based on loaded PIL font
128
  if "dejavu" in self.font_path_pil_resolved.lower():
129
+ self.video_overlay_font = "DejaVu-Sans-Bold"
130
  elif "liberation" in self.font_path_pil_resolved.lower():
131
+ self.video_overlay_font = "Liberation-Sans-Bold"
132
+ else: # Fallback if custom font doesn't have an obvious ImageMagick name
133
  self.video_overlay_font = self.DEFAULT_MOVIEPY_FONT
134
  except IOError as e_font_load:
135
+ logger.error(
136
+ f"Pillow font loading IOError for '{self.font_path_pil_resolved}': {e_font_load}. Using default."
137
+ )
138
  else:
139
  logger.warning("Custom Pillow font not found. Using default.")
140
 
141
+ self.openai_api_key = None
142
+ self.USE_AI_IMAGE_GENERATION = False
143
+ self.dalle_model = "dall-e-3"
144
+ self.image_size_dalle3 = "1792x1024"
145
  self.video_frame_size = (1280, 720)
146
 
147
+ self.elevenlabs_api_key = None
148
+ self.USE_ELEVENLABS = False
149
+ self.elevenlabs_client = None
150
  self.elevenlabs_voice_id = default_elevenlabs_voice_id
151
  if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
152
+ self.elevenlabs_voice_settings = VoiceSettings(
153
+ stability=0.60,
154
+ similarity_boost=0.80,
155
+ style=0.15,
156
+ use_speaker_boost=True,
157
+ )
158
+ else:
159
+ self.elevenlabs_voice_settings = None
160
 
161
+ self.pexels_api_key = None
162
+ self.USE_PEXELS = False
163
+ self.runway_api_key = None
164
+ self.USE_RUNWAYML = False
165
+ self.runway_ml_client_instance = None # More specific name
166
 
167
  # Attempt to initialize Runway client if SDK is present and env var might be set
168
+ if (
169
+ RUNWAYML_SDK_IMPORTED
170
+ and RunwayMLAPIClient
171
+ and os.getenv("RUNWAYML_API_SECRET")
172
+ ):
173
  try:
174
+ self.runway_ml_client_instance = RunwayMLAPIClient() # SDK uses env var
175
+ self.USE_RUNWAYML = True # Assume enabled if client initializes
176
+ logger.info(
177
+ "RunwayML Client initialized from RUNWAYML_API_SECRET env var at startup."
178
+ )
179
  except Exception as e_runway_init_startup:
180
+ logger.error(
181
+ f"Initial RunwayML client init failed (env var RUNWAYML_API_SECRET might be invalid): {e_runway_init_startup}"
182
+ )
183
  self.USE_RUNWAYML = False
184
+
185
  logger.info("VisualEngine initialized.")
186
 
187
  # --- API Key Setters ---
188
  def set_openai_api_key(self, api_key):
189
+ self.openai_api_key = api_key
190
+ self.USE_AI_IMAGE_GENERATION = bool(api_key)
191
+ logger.info(
192
+ f"DALL-E ({self.dalle_model}) status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}"
193
+ )
194
 
195
  def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
196
  self.elevenlabs_api_key = api_key
197
+ if voice_id_from_secret:
198
+ self.elevenlabs_voice_id = voice_id_from_secret
199
  if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
200
  try:
201
  self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
202
  self.USE_ELEVENLABS = bool(self.elevenlabs_client)
203
+ logger.info(
204
+ f"ElevenLabs Client status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})"
205
+ )
206
  except Exception as e:
207
+ logger.error(
208
+ f"ElevenLabs client initialization error: {e}. Service Disabled.",
209
+ exc_info=True,
210
+ )
211
+ self.USE_ELEVENLABS = False
212
+ self.elevenlabs_client = None
213
  else:
214
  self.USE_ELEVENLABS = False
215
+ logger.info(
216
+ f"ElevenLabs Service Disabled (API key not provided or SDK import issue)."
217
+ )
218
 
219
  def set_pexels_api_key(self, api_key):
220
+ self.pexels_api_key = api_key
221
+ self.USE_PEXELS = bool(api_key)
222
+ logger.info(
223
+ f"Pexels Search status: {'Ready' if self.USE_PEXELS else 'Disabled'}"
224
+ )
225
 
226
  def set_runway_api_key(self, api_key):
227
+ self.runway_api_key = api_key # Store key regardless for potential direct HTTP use
228
  if api_key:
229
  if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
230
+ if not self.runway_ml_client_instance: # If not already initialized by env var
231
  try:
232
  # The RunwayML Python SDK expects the API key via the RUNWAYML_API_SECRET env var.
233
  # If it's not set, we set it temporarily for client initialization.
234
  original_env_secret = os.getenv("RUNWAYML_API_SECRET")
235
  if not original_env_secret:
236
+ logger.info(
237
+ "Temporarily setting RUNWAYML_API_SECRET from provided key for SDK client init."
238
+ )
239
  os.environ["RUNWAYML_API_SECRET"] = api_key
240
+
241
  self.runway_ml_client_instance = RunwayMLAPIClient()
242
+ self.USE_RUNWAYML = True # SDK client successfully initialized
243
+ logger.info(
244
+ "RunwayML Client initialized successfully using provided API key."
245
+ )
246
 
247
+ if not original_env_secret: # Clean up if we set it
248
  del os.environ["RUNWAYML_API_SECRET"]
249
+ logger.info(
250
+ "Cleared temporary RUNWAYML_API_SECRET env var."
251
+ )
252
 
253
  except Exception as e_client_init:
254
+ logger.error(
255
+ f"RunwayML Client initialization via set_runway_api_key failed: {e_client_init}",
256
+ exc_info=True,
257
+ )
258
+ self.USE_RUNWAYML = False
259
+ self.runway_ml_client_instance = None
260
+ else: # Client was already initialized (likely via env var during __init__)
261
  self.USE_RUNWAYML = True
262
+ logger.info(
263
+ "RunwayML Client was already initialized (likely from env var). API key stored."
264
+ )
265
+ else: # SDK not imported
266
+ logger.warning(
267
+ "RunwayML SDK not imported. API key stored, but integration requires SDK. Service effectively disabled."
268
+ )
269
  self.USE_RUNWAYML = False
270
+ else: # No API key provided
271
+ self.USE_RUNWAYML = False
272
+ self.runway_ml_client_instance = None
273
  logger.info("RunwayML Service Disabled (no API key provided).")
274
 
275
  # --- Helper Methods ---
 
280
  ext = os.path.splitext(image_path)[1].lower()
281
  mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg"}
282
  mime_type = mime_map.get(ext, "application/octet-stream")
283
+ if mime_type == "application/octet-stream":
284
+ logger.warning(
285
+ f"Could not determine MIME type for {image_path}, using default."
286
+ )
287
+
288
  with open(image_path, "rb") as image_file:
289
+ encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
290
  data_uri = f"data:{mime_type};base64,{encoded_string}"
291
+ logger.debug(
292
+ f"Generated data URI for {os.path.basename(image_path)} (first 100 chars): {data_uri[:100]}..."
293
+ )
294
  return data_uri
295
  except FileNotFoundError:
296
  logger.error(f"Image file not found at {image_path} for data URI conversion.")
297
  return None
298
  except Exception as e:
299
+ logger.error(
300
+ f"Error converting image {image_path} to data URI: {e}", exc_info=True
301
+ )
302
  return None
303
 
304
  def _map_resolution_to_runway_ratio(self, width, height):
305
  ratio_str = f"{width}:{height}"
306
  # Gen-4 supports: "1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"
307
+ supported_ratios_gen4 = [
308
+ "1280:720",
309
+ "720:1280",
310
+ "1104:832",
311
+ "832:1104",
312
+ "960:960",
313
+ "1584:672",
314
+ ]
315
  if ratio_str in supported_ratios_gen4:
316
  return ratio_str
317
  # Fallback or find closest - for now, strict matching or default
318
+ logger.warning(
319
+ f"Resolution {ratio_str} not directly in Gen-4 supported list. Defaulting to 1280:720."
320
+ )
321
  return "1280:720"
322
 
323
  def _get_text_dimensions(self, text_content, font_object):
324
  # (Robust version from before)
325
+ default_char_height = getattr(font_object, "size", self.current_font_size_pil)
326
+ if not text_content:
327
+ return 0, default_char_height
328
  try:
329
+ if hasattr(font_object, "getbbox"):
330
+ bbox = font_object.getbbox(text_content)
331
+ w = bbox[2] - bbox[0]
332
+ h = bbox[3] - bbox[1]
333
  return w, h if h > 0 else default_char_height
334
+ elif hasattr(font_object, "getsize"):
335
+ w, h = font_object.getsize(text_content)
336
  return w, h if h > 0 else default_char_height
337
+ else:
338
+ return (
339
+ int(len(text_content) * default_char_height * 0.6),
340
+ int(default_char_height * 1.2),
341
+ )
342
+ except Exception as e:
343
+ logger.warning(f"Error in _get_text_dimensions: {e}")
344
+ return (
345
+ int(len(text_content) * self.current_font_size_pil * 0.6),
346
+ int(self.current_font_size_pil * 1.2),
347
+ )
348
 
349
  def _create_placeholder_image_content(self, text_description, filename, size=None):
350
  # (Corrected version from previous response)
351
+ if size is None:
352
+ size = self.video_frame_size
353
+ img = Image.new("RGB", size, color=(20, 20, 40))
354
+ d = ImageDraw.Draw(img)
355
+ padding = 25
356
+ max_w = size[0] - (2 * padding)
357
+ lines = []
358
+ if not text_description:
359
+ text_description = "(Placeholder Image)"
360
+ words = text_description.split()
361
+ current_line_text = ""
362
  for word_idx, word in enumerate(words):
363
  prospective_addition = word + (" " if word_idx < len(words) - 1 else "")
364
  test_line_text = current_line_text + prospective_addition
365
  current_w, _ = self._get_text_dimensions(test_line_text, self.font_pil)
366
+ if current_w == 0 and test_line_text.strip():
367
+ current_w = len(test_line_text) * (self.current_font_size_pil * 0.6) # Estimate
368
 
369
+ if current_w <= max_w:
370
+ current_line_text = test_line_text
371
  else:
372
+ if current_line_text.strip():
373
+ lines.append(current_line_text.strip())
374
+ current_line_text = prospective_addition # Start new line
375
+ if current_line_text.strip():
376
+ lines.append(current_line_text.strip())
377
 
378
  if not lines and text_description:
379
+ avg_char_w, _ = self._get_text_dimensions("W", self.font_pil)
380
+ avg_char_w = avg_char_w or (self.current_font_size_pil * 0.6)
381
  chars_per_line = int(max_w / avg_char_w) if avg_char_w > 0 else 20
382
+ lines.append(
383
+ text_description[:chars_per_line]
384
+ + ("..." if len(text_description) > chars_per_line else "")
385
+ )
386
+ elif not lines:
387
+ lines.append("(Placeholder Error)")
388
+
389
+ _, single_line_h = self._get_text_dimensions("Ay", self.font_pil)
390
+ single_line_h = single_line_h if single_line_h > 0 else self.current_font_size_pil + 2
391
+ max_lines = (
392
+ min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2))
393
+ if single_line_h > 0
394
+ else 1
395
+ )
396
+ max_lines = max(1, max_lines) # Ensure at least one line
397
 
 
 
 
 
398
  y_pos = padding + (size[1] - (2 * padding) - max_lines * (single_line_h + 2)) / 2.0
399
  for i in range(max_lines):
400
+ line_text = lines[i]
401
+ line_w, _ = self._get_text_dimensions(line_text, self.font_pil)
402
+ if line_w == 0 and line_text.strip():
403
+ line_w = len(line_text) * (self.current_font_size_pil * 0.6)
404
  x_pos = (size[0] - line_w) / 2.0
405
+ try:
406
+ d.text((x_pos, y_pos), line_text, font=self.font_pil, fill=(200, 200, 180))
407
+ except Exception as e_draw:
408
+ logger.error(f"Pillow d.text error: {e_draw} for '{line_text}'")
409
  y_pos += single_line_h + 2
410
  if i == 6 and max_lines > 7:
411
+ try:
412
+ d.text((x_pos, y_pos), "...", font=self.font_pil, fill=(200, 200, 180))
413
+ except Exception as e_elip:
414
+ logger.error(f"Pillow d.text ellipsis error: {e_elip}")
415
+ break
416
+
417
  filepath = os.path.join(self.output_dir, filename)
418
+ try:
419
+ img.save(filepath)
420
+ return filepath
421
+ except Exception as e_save:
422
+ logger.error(
423
+ f"Saving placeholder image '{filepath}' error: {e_save}", exc_info=True
424
+ )
425
+ return None
426
 
427
  def _search_pexels_image(self, query, output_filename_base):
428
  # <<< THIS IS THE CORRECTED METHOD >>>
429
+ if not self.USE_PEXELS or not self.pexels_api_key:
430
+ return None
431
  headers = {"Authorization": self.pexels_api_key}
432
  params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
433
  base_name_for_pexels, _ = os.path.splitext(output_filename_base)
 
437
  logger.info(f"Pexels: Searching for '{query}'")
438
  effective_query = " ".join(query.split()[:5])
439
  params["query"] = effective_query
440
+ response = requests.get(
441
+ "https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20
442
+ )
443
  response.raise_for_status()
444
  data = response.json()
445
  if data.get("photos") and len(data["photos"]) > 0:
446
  photo_details = data["photos"][0]
447
  photo_url = photo_details.get("src", {}).get("large2x")
448
+ if not photo_url:
449
+ logger.warning(
450
+ f"Pexels: 'large2x' URL missing for '{effective_query}'. Details: {photo_details}"
451
+ )
452
+ return None
453
+ image_response = requests.get(photo_url, timeout=60)
454
+ image_response.raise_for_status()
455
  img_data_pil = Image.open(io.BytesIO(image_response.content))
456
+ if img_data_pil.mode != "RGB":
457
+ img_data_pil = img_data_pil.convert("RGB")
458
+ img_data_pil.save(filepath)
459
+ logger.info(f"Pexels: Image saved to {filepath}")
460
+ return filepath
461
+ else:
462
+ logger.info(f"Pexels: No photos for '{effective_query}'.")
463
+ return None
464
+ except requests.exceptions.RequestException as e_req:
465
+ logger.error(f"Pexels: RequestException for '{query}': {e_req}", exc_info=False)
466
+ return None # Less verbose for network
467
+ except Exception as e:
468
+ logger.error(f"Pexels: General error for '{query}': {e}", exc_info=True)
469
+ return None
470
 
471
  # --- RunwayML Video Generation (Gen-4 Aligned with SDK) ---
472
+ def _generate_video_clip_with_runwayml(
473
+ self,
474
+ text_prompt_for_motion,
475
+ input_image_path,
476
+ scene_identifier_filename_base,
477
+ target_duration_seconds=5,
478
+ ):
479
  if not self.USE_RUNWAYML or not self.runway_ml_client_instance:
480
  logger.warning("RunwayML not enabled or client not initialized. Cannot generate video clip.")
481
  return None
482
  if not input_image_path or not os.path.exists(input_image_path):
483
+ logger.error(
484
+ f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}"
485
+ )
486
  return None
487
 
488
  image_data_uri = self._image_to_data_uri(input_image_path)
489
+ if not image_data_uri:
490
+ return None
491
+
492
+ runway_duration = 10 if target_duration_seconds >= 8 else 5 # Map to 5s or 10s for Gen-4
493
+ runway_ratio_str = self._map_resolution_to_runway_ratio(
494
+ self.video_frame_size[0], self.video_frame_size[1]
495
+ )
496
 
 
 
 
497
  # Use a more descriptive output filename for Runway videos
498
  base_name_for_runway, _ = os.path.splitext(scene_identifier_filename_base)
499
  output_video_filename = base_name_for_runway + f"_runway_gen4_d{runway_duration}s.mp4"
500
  output_video_filepath = os.path.join(self.output_dir, output_video_filename)
501
 
502
+ logger.info(
503
+ f"Initiating Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', image='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'"
504
+ )
505
  try:
506
  # Using the RunwayML Python SDK structure
507
  task_submission = self.runway_ml_client_instance.image_to_video.create(
508
+ model="gen4_turbo",
509
  prompt_image=image_data_uri,
510
+ prompt_text=text_prompt_for_motion, # This is the motion prompt
511
  duration=runway_duration,
512
  ratio=runway_ratio_str,
513
  # seed=random.randint(0, 4294967295), # Optional: for reproducibility
 
517
  logger.info(f"Runway Gen-4 task created with ID: {task_id}. Polling for completion...")
518
 
519
  poll_interval_seconds = 10
520
+ max_polling_duration_seconds = 6 * 60 # 6 minutes
521
  start_time = time.time()
522
 
523
  while time.time() - start_time < max_polling_duration_seconds:
 
525
  task_details = self.runway_ml_client_instance.tasks.retrieve(id=task_id)
526
  logger.info(f"Runway task {task_id} status: {task_details.status}")
527
 
528
+ if task_details.status == "SUCCEEDED":
529
  # Determine output URL (this structure might vary based on SDK version)
530
  output_url = None
531
+ if hasattr(task_details, "output") and task_details.output and hasattr(
532
+ task_details.output, "url"
533
+ ):
534
  output_url = task_details.output.url
535
+ elif (
536
+ hasattr(task_details, "artifacts")
537
+ and task_details.artifacts
538
+ and isinstance(task_details.artifacts, list)
539
+ and len(task_details.artifacts) > 0
540
+ ):
541
  first_artifact = task_details.artifacts[0]
542
+ if hasattr(first_artifact, "url"):
543
+ output_url = first_artifact.url
544
+ elif hasattr(first_artifact, "download_url"):
545
+ output_url = first_artifact.download_url
546
+
547
  if not output_url:
548
+ logger.error(
549
+ f"Runway task {task_id} SUCCEEDED, but no output URL found. Details: {vars(task_details) if hasattr(task_details,'__dict__') else str(task_details)}"
550
+ )
551
  return None
552
 
553
  logger.info(f"Runway task {task_id} SUCCEEDED. Downloading video from: {output_url}")
554
  video_response = requests.get(output_url, stream=True, timeout=300)
555
  video_response.raise_for_status()
556
+ with open(output_video_filepath, "wb") as f:
557
+ for chunk in video_response.iter_content(chunk_size=8192):
558
+ f.write(chunk)
559
+ logger.info(
560
+ f"Runway Gen-4 video successfully downloaded to: {output_video_filepath}"
561
+ )
562
  return output_video_filepath
563
+
564
+ elif task_details.status in ["FAILED", "ABORTED", "ERROR"]: # Added ERROR
565
+ error_msg = (
566
+ getattr(task_details, "error_message", None)
567
+ or getattr(getattr(task_details, "output", None), "error", "Unknown error from Runway task.")
568
+ )
569
+ logger.error(
570
+ f"Runway task {task_id} final status: {task_details.status}. Error: {error_msg}"
571
+ )
572
  return None
573
+
574
+ logger.warning(
575
+ f"Runway task {task_id} timed out polling after {max_polling_duration_seconds} seconds."
576
+ )
577
  return None
578
 
579
+ except AttributeError as ae: # If SDK methods are not as expected
580
+ logger.error(
581
+ f"AttributeError with RunwayML SDK: {ae}. Ensure SDK is up to date and methods/attributes match documentation.",
582
+ exc_info=True,
583
+ )
584
  return None
585
  except Exception as e_runway_call:
586
+ logger.error(
587
+ f"General error during Runway Gen-4 API call or processing: {e_runway_call}",
588
+ exc_info=True,
589
+ )
590
  return None
591
 
592
  def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
593
  # (Keeping as before)
594
+ if size is None:
595
+ size = self.video_frame_size
596
+ fp = os.path.join(self.output_dir, filename)
597
+ tc = None
598
+ try:
599
+ tc = TextClip(
600
+ text_description,
601
+ fontsize=50,
602
+ color="white",
603
+ font=self.video_overlay_font,
604
+ bg_color="black",
605
+ size=size,
606
+ method="caption",
607
+ ).set_duration(duration)
608
+ tc.write_videofile(
609
+ fp, fps=24, codec="libx264", preset="ultrafast", logger=None, threads=2
610
+ )
611
+ logger.info(f"Generic placeholder video: {fp}")
612
+ return fp
613
+ except Exception as e:
614
+ logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True)
615
+ return None
616
  finally:
617
+ if tc and hasattr(tc, "close"):
618
+ tc.close()
619
 
620
  # --- generate_scene_asset (Main asset generation logic using Runway Gen-4 workflow) ---
621
+ def generate_scene_asset(
622
+ self,
623
+ image_generation_prompt_text,
624
+ motion_prompt_text_for_video,
625
+ scene_data,
626
+ scene_identifier_filename_base,
627
+ generate_as_video_clip=False,
628
+ runway_target_duration=5,
629
+ ):
630
  # (Logic updated for Runway Gen-4 workflow)
631
  base_name, _ = os.path.splitext(scene_identifier_filename_base)
632
+ asset_info = {
633
+ "path": None,
634
+ "type": "none",
635
+ "error": True,
636
+ "prompt_used": image_generation_prompt_text,
637
+ "error_message": "Asset generation init failed",
638
+ }
639
  input_image_for_runway_path = None
640
  # Use a distinct name for the base image if it's only an intermediate step for video
641
  base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
642
  base_image_filepath = os.path.join(self.output_dir, base_image_filename)
643
+
644
  # STEP 1: Generate/acquire the base image
645
  # Try DALL-E
646
  if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
647
+ max_r, att_n = 2, 0
 
648
  for att_n in range(max_r):
649
+ try:
650
+ logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...")
651
+ cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
652
+ r = cl.images.generate(
653
+ model=self.dalle_model,
654
+ prompt=image_generation_prompt_text,
655
+ n=1,
656
+ size=self.image_size_dalle3,
657
+ quality="hd",
658
+ response_format="url",
659
+ style="vivid",
660
+ )
661
+ iu = r.data[0].url
662
+ rp = getattr(r.data[0], "revised_prompt", None)
663
+ if rp:
664
+ logger.info(f"DALL-E revised: {rp[:70]}...")
665
+ ir = requests.get(iu, timeout=120)
666
+ ir.raise_for_status()
667
+ id_img = Image.open(io.BytesIO(ir.content))
668
+ if id_img.mode != "RGB":
669
+ id_img = id_img.convert("RGB")
670
+ id_img.save(base_image_filepath)
671
+ logger.info(f"DALL-E base img saved: {base_image_filepath}")
672
+ input_image_for_runway_path = base_image_filepath
673
+ asset_info = {
674
+ "path": base_image_filepath,
675
+ "type": "image",
676
+ "error": False,
677
+ "prompt_used": image_generation_prompt_text,
678
+ "revised_prompt": rp,
679
+ }
680
+ break
681
+ except openai.RateLimitError as e:
682
+ logger.warning(f"OpenAI RateLimit {att_n+1}:{e}.Retry...")
683
+ time.sleep(5 * (att_n + 1))
684
+ asset_info["error_message"] = str(e)
685
+ except Exception as e:
686
+ logger.error(f"DALL-E base img error:{e}", exc_info=True)
687
+ asset_info["error_message"] = str(e)
688
+ break
689
+
690
+ if asset_info["error"]:
691
+ logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")
692
+
693
+ if asset_info["error"] and self.USE_PEXELS:
694
+ # Pexels Fallback
695
+ logger.info("Trying Pexels for base img.")
696
+ pqt = scene_data.get("pexels_search_query_감독", f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
697
+ pp = self._search_pexels_image(pqt, base_image_filename) # Use base_image_filename
698
+ if pp:
699
+ input_image_for_runway_path = pp
700
+ asset_info = {
701
+ "path": pp,
702
+ "type": "image",
703
+ "error": False,
704
+ "prompt_used": f"Pexels:{pqt}",
705
+ }
706
+ else:
707
+ current_em = asset_info.get("error_message", "")
708
+ asset_info["error_message"] = (current_em + " Pexels failed for base.").strip()
709
+
710
+ if asset_info["error"]:
711
+ # Placeholder Fallback
712
+ logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.")
713
+ ppt = asset_info.get("prompt_used", image_generation_prompt_text)
714
+ php = self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...", base_image_filename) # Use base_image_filename
715
+ if php:
716
+ input_image_for_runway_path = php
717
+ asset_info = {
718
+ "path": php,
719
+ "type": "image",
720
+ "error": False,
721
+ "prompt_used": ppt,
722
+ }
723
+ else:
724
+ current_em = asset_info.get("error_message", "")
725
+ asset_info["error_message"] = (current_em + " Base placeholder failed.").strip()
726
 
727
  # STEP 2: If video clip is requested, use the generated base image with RunwayML
728
  if generate_as_video_clip:
729
  if not input_image_for_runway_path:
730
+ logger.error("RunwayML video: base image generation failed entirely. Cannot proceed.")
731
+ asset_info["error"] = True
732
+ asset_info["error_message"] = (
733
+ asset_info.get("error_message", "") + " Base img completely failed, Runway abort."
734
+ ).strip()
735
+ asset_info["type"] = "none"
736
+ return asset_info
737
+
738
+ if self.USE_RUNWAYML:
739
+ # This check is now more about if the service is generally enabled
740
+ video_path = self._generate_video_clip_with_runwayml(
741
+ motion_prompt_text_for_video,
742
+ input_image_for_runway_path,
743
+ base_name,
744
+ runway_target_duration,
745
+ ) # Pass base_name for runway output filename
746
+ if video_path and os.path.exists(video_path):
747
+ asset_info = {
748
+ "path": video_path,
749
+ "type": "video",
750
+ "error": False,
751
+ "prompt_used": motion_prompt_text_for_video,
752
+ "base_image_path": input_image_for_runway_path,
753
+ }
754
+ else:
755
+ logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.")
756
+ asset_info["error"] = True
757
+ asset_info["error_message"] = (
758
+ asset_info.get("error_message", "Base img ok.")
759
+ + " RunwayML video step failed; use base img."
760
+ ).strip()
761
+ asset_info["path"] = input_image_for_runway_path
762
+ asset_info["type"] = "image"
763
+ asset_info["prompt_used"] = image_generation_prompt_text
764
+ else:
765
+ logger.warning("RunwayML selected but not enabled/client not ready. Use base img.")
766
+ asset_info["error"] = True
767
+ asset_info["error_message"] = (
768
+ asset_info.get("error_message", "Base img ok.")
769
+ + " RunwayML disabled; use base img."
770
+ ).strip()
771
+ asset_info["path"] = input_image_for_runway_path
772
+ asset_info["type"] = "image"
773
+ asset_info["prompt_used"] = image_generation_prompt_text
774
+
775
  return asset_info
776
 
777
  def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
778
  # (Keep as before - robust enough)
779
+ if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
780
+ logger.info("11L skip.")
781
+ return None
782
+
783
+ afp = os.path.join(self.output_dir, output_filename)
784
+ try:
785
+ logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}...")
786
+ asm = None
787
+
788
+ if hasattr(self.elevenlabs_client, "text_to_speech") and hasattr(
789
+ self.elevenlabs_client.text_to_speech, "stream"
790
+ ):
791
+ asm = self.elevenlabs_client.text_to_speech.stream
792
+ logger.info("Using 11L .text_to_speech.stream()")
793
+ elif hasattr(self.elevenlabs_client, "generate_stream"):
794
+ asm = self.elevenlabs_client.generate_stream
795
+ logger.info("Using 11L .generate_stream()")
796
+ elif hasattr(self.elevenlabs_client, "generate"):
797
+ logger.info("Using 11L .generate()")
798
+ vp = (
799
+ Voice(voice_id=str(self.elevenlabs_voice_id), settings=self.elevenlabs_voice_settings)
800
+ if Voice and self.elevenlabs_voice_settings
801
+ else str(self.elevenlabs_voice_id)
802
+ )
803
+ ab = self.elevenlabs_client.generate(
804
+ text=text_to_narrate, voice=vp, model="eleven_multilingual_v2"
805
+ )
806
+ with open(afp, "wb") as f:
807
+ f.write(ab)
808
+ logger.info(f"11L audio (non-stream): {afp}")
809
+ return afp
810
+ else:
811
+ logger.error("No 11L audio method.")
812
+ return None
813
+
814
+ # If we have a streaming method (asm), use it
815
+ if asm:
816
+ vps = {"voice_id": str(self.elevenlabs_voice_id)}
817
+ if self.elevenlabs_voice_settings:
818
+ if hasattr(self.elevenlabs_voice_settings, "model_dump"):
819
+ vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
820
+ elif hasattr(self.elevenlabs_voice_settings, "dict"):
821
+ vps["voice_settings"] = self.elevenlabs_voice_settings.dict()
822
+ else:
823
+ vps["voice_settings"] = self.elevenlabs_voice_settings
824
+
825
+ adi = asm(text=text_to_narrate, model_id="eleven_multilingual_v2", **vps)
826
+ with open(afp, "wb") as f:
827
+ for c in adi:
828
+ if c:
829
+ f.write(c)
830
+ logger.info(f"11L audio (stream): {afp}")
831
+ return afp
832
+
833
+ except Exception as e:
834
+ logger.error(f"11L audio error: {e}", exc_info=True)
835
+ return None
836
 
837
  # --- assemble_animatic_from_assets (Still contains crucial debug saves for blank video issue) ---
838
+ def assemble_animatic_from_assets(
839
+ self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24
840
+ ):
841
  # (Keep the version with robust image processing, C-contiguous arrays, debug saves, and pix_fmt)
842
+ if not asset_data_list:
843
+ logger.warning("No assets for animatic.")
844
+ return None
845
+
846
+ processed_clips = []
847
+ narration_clip = None
848
+ final_clip = None
849
  logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
850
 
851
  for i, asset_info in enumerate(asset_data_list):
852
+ asset_path = asset_info.get("path")
853
+ asset_type = asset_info.get("type")
854
+ scene_dur = asset_info.get("duration", 4.5)
855
+ scene_num = asset_info.get("scene_num", i + 1)
856
+ key_action = asset_info.get("key_action", "")
857
  logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
858
 
859
+ if not (asset_path and os.path.exists(asset_path)):
860
+ logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.")
861
+ continue
862
+ if scene_dur <= 0:
863
+ logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.")
864
+ continue
865
 
866
  current_scene_mvpy_clip = None
867
  try:
868
+ if asset_type == "image":
869
+ pil_img = Image.open(asset_path)
870
+ logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
871
+ img_rgba = pil_img.convert("RGBA") if pil_img.mode != "RGBA" else pil_img.copy()
872
+ thumb = img_rgba.copy()
873
+ rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling, "LANCZOS") else Image.BILINEAR
874
+ thumb.thumbnail(self.video_frame_size, rf)
875
+ cv_rgba = Image.new("RGBA", self.video_frame_size, (0, 0, 0, 0))
876
+ xo, yo = (
877
+ (self.video_frame_size[0] - thumb.width) // 2,
878
+ (self.video_frame_size[1] - thumb.height) // 2,
879
+ )
880
+ cv_rgba.paste(thumb, (xo, yo), thumb)
881
+ final_rgb_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0))
882
+ final_rgb_pil.paste(cv_rgba, mask=cv_rgba.split()[3])
883
+ dbg_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png")
884
+ final_rgb_pil.save(dbg_path)
885
+ logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
886
+ frame_np = np.array(final_rgb_pil, dtype=np.uint8)
887
+ if not frame_np.flags["C_CONTIGUOUS"]:
888
+ frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8)
889
+ logger.debug(
890
+ f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}"
891
+ )
892
+ if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3:
893
+ logger.error(f"S{scene_num}: Invalid NumPy. Skip.")
894
+ continue
895
+ clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur)
896
+ mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png")
897
+ clip_base.save_frame(mvpy_dbg_path, t=0.1)
898
+ logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
899
  clip_fx = clip_base
900
+ try:
901
+ es = random.uniform(1.03, 1.08)
902
+ clip_fx = clip_base.fx(
903
+ vfx.resize, lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1
904
+ ).set_position("center")
905
+ except Exception as e:
906
+ logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False)
907
  current_scene_mvpy_clip = clip_fx
908
+
909
+ elif asset_type == "video":
910
+ src_clip = None
911
  try:
912
+ src_clip = VideoFileClip(
913
+ asset_path,
914
+ target_resolution=(
915
+ self.video_frame_size[1],
916
+ self.video_frame_size[0],
917
+ )
918
+ if self.video_frame_size
919
+ else None,
920
+ audio=False,
921
+ )
922
+ tmp_clip = src_clip
923
+ if src_clip.duration != scene_dur:
924
+ if src_clip.duration > scene_dur:
925
+ tmp_clip = src_clip.subclip(0, scene_dur)
926
  else:
927
+ if scene_dur / src_clip.duration > 1.5 and src_clip.duration > 0.1:
928
+ tmp_clip = src_clip.loop(duration=scene_dur)
929
+ else:
930
+ tmp_clip = src_clip.set_duration(src_clip.duration)
931
+ logger.info(
932
+ f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s)."
933
+ )
934
+ current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur)
935
+ if current_scene_mvpy_clip.size != list(self.video_frame_size):
936
+ current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size)
937
+ except Exception as e:
938
+ logger.error(f"S{scene_num} Video load error '{asset_path}':{e}", exc_info=True)
939
+ continue
940
  finally:
941
+ if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip, "close"):
942
+ src_clip.close()
943
+ else:
944
+ logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip.")
945
+ continue
946
+
947
  if current_scene_mvpy_clip and key_action:
948
  try:
949
+ to_dur = (
950
+ min(current_scene_mvpy_clip.duration - 0.5, current_scene_mvpy_clip.duration * 0.8)
951
+ if current_scene_mvpy_clip.duration > 0.5
952
+ else current_scene_mvpy_clip.duration
953
+ )
954
+ to_start = 0.25
955
  if to_dur > 0:
956
+ txt_c = TextClip(
957
+ f"Scene {scene_num}\n{key_action}",
958
+ fontsize=self.VIDEO_OVERLAY_FONT_SIZE,
959
+ color=self.VIDEO_OVERLAY_FONT_COLOR,
960
+ font=self.video_overlay_font,
961
+ bg_color="rgba(10,10,20,0.7)",
962
+ method="caption",
963
+ align="West",
964
+ size=(self.video_frame_size[0] * 0.9, None),
965
+ kerning=-1,
966
+ stroke_color="black",
967
+ stroke_width=1.5,
968
+ ).set_duration(to_dur).set_start(to_start).set_position(
969
+ ("center", 0.92), relative=True
970
+ )
971
+ current_scene_mvpy_clip = CompositeVideoClip(
972
+ [current_scene_mvpy_clip, txt_c], size=self.video_frame_size, use_bgclip=True
973
+ )
974
+ else:
975
+ logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
976
+ except Exception as e:
977
+ logger.error(f"S{scene_num} TextClip error:{e}. No text.", exc_info=True)
978
+
979
+ if current_scene_mvpy_clip:
980
+ processed_clips.append(current_scene_mvpy_clip)
981
+ logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
982
+ except Exception as e:
983
+ logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}", exc_info=True)
984
  finally:
985
+ if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip, "close"):
986
+ try:
987
+ current_scene_mvpy_clip.close()
988
+ except:
989
+ pass
990
 
991
+ if not processed_clips:
992
+ logger.warning("No clips processed. Abort.")
993
+ return None
994
+
995
+ td = 0.75
996
  try:
997
+ logger.info(f"Concatenating {len(processed_clips)} clips.")
998
+ if len(processed_clips) > 1:
999
+ final_clip = concatenate_videoclips(processed_clips, padding=-td if td > 0 else 0, method="compose")
1000
+ elif processed_clips:
1001
+ final_clip = processed_clips[0]
1002
+ if not final_clip:
1003
+ logger.error("Concatenation failed.")
1004
+ return None
1005
+
1006
  logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
1007
+ if td > 0 and final_clip.duration > 0:
1008
+ if final_clip.duration > td * 2:
1009
+ final_clip = final_clip.fx(vfx.fadein, td).fx(vfx.fadeout, td)
1010
+ else:
1011
+ final_clip = final_clip.fx(vfx.fadein, min(td, final_clip.duration / 2.0))
1012
+
1013
+ if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration > 0:
1014
+ try:
1015
+ narration_clip = AudioFileClip(overall_narration_path)
1016
+ final_clip = final_clip.set_audio(narration_clip)
1017
+ logger.info("Narration added.")
1018
+ except Exception as e:
1019
+ logger.error(f"Narration add error:{e}", exc_info=True)
1020
+ elif final_clip.duration <= 0:
1021
+ logger.warning("Video no duration. No audio.")
1022
+
1023
+ if final_clip and final_clip.duration > 0:
1024
+ op = os.path.join(self.output_dir, output_filename)
1025
+ logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
1026
+ final_clip.write_videofile(
1027
+ op,
1028
+ fps=fps,
1029
+ codec="libx264",
1030
+ preset="medium",
1031
+ audio_codec="aac",
1032
+ temp_audiofile=os.path.join(self.output_dir, f"temp-audio-{os.urandom(4).hex()}.m4a"),
1033
+ remove_temp=True,
1034
+ threads=os.cpu_count() or 2,
1035
+ logger="bar",
1036
+ bitrate="5000k",
1037
+ ffmpeg_params=["-pix_fmt", "yuv420p"],
1038
+ )
1039
+ logger.info(f"Video created:{op}")
1040
+ return op
1041
+ else:
1042
+ logger.error("Final clip invalid. No write.")
1043
+ return None
1044
+ except Exception as e:
1045
+ logger.error(f"Video write error:{e}", exc_info=True)
1046
+ return None
1047
  finally:
1048
  logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
1049
  all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
1050
  for clip_obj_to_close in all_clips_to_close:
1051
+ if clip_obj_to_close and hasattr(clip_obj_to_close, "close"):
1052
+ try:
1053
+ clip_obj_to_close.close()
1054
+ except Exception as e_close:
1055
+ logger.warning(
1056
+ f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}"
1057
+ )