mgbam commited on
Commit
e22eb13
·
verified ·
1 Parent(s): a219e07

Update core/visual_engine.py

Browse files
Files changed (1) hide show
  1. core/visual_engine.py +390 -698
core/visual_engine.py CHANGED
@@ -1,9 +1,7 @@
 
1
  from PIL import Image, ImageDraw, ImageFont, ImageOps
2
  import base64
3
- import json
4
- from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
5
- CompositeVideoClip, AudioFileClip)
6
- import moviepy.video.fx.all as vfx
7
  import numpy as np
8
  import os
9
  import openai
@@ -12,25 +10,28 @@ import io
12
  import time
13
  import random
14
  import logging
15
- import mimetypes
16
 
17
- logger = logging.getLogger(__name__)
18
- logger.setLevel(logging.INFO)
 
 
19
 
20
- # --- MONKEY PATCH ---
21
  try:
22
- if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
23
- if not hasattr(Image, 'ANTIALIAS'):
24
- Image.ANTIALIAS = Image.Resampling.LANCZOS
25
- elif hasattr(Image, 'LANCZOS'):
26
- if not hasattr(Image, 'ANTIALIAS'):
27
- Image.ANTIALIAS = Image.LANCZOS
28
- elif not hasattr(Image, 'ANTIALIAS'):
29
- print("WARNING: Pillow ANTIALIAS/Resampling issue.")
30
- except Exception as e_mp:
31
- print(f"WARNING: ANTIALIAS patch error: {e_mp}")
32
-
33
- # --- SERVICE CLIENT IMPORTS ---
 
 
34
  ELEVENLABS_CLIENT_IMPORTED = False
35
  ElevenLabsAPIClient = None
36
  Voice = None
@@ -42,827 +43,518 @@ try:
42
  Voice = ImportedVoice
43
  VoiceSettings = ImportedVoiceSettings
44
  ELEVENLABS_CLIENT_IMPORTED = True
45
- logger.info("ElevenLabs client components imported.")
46
- except Exception as e_eleven:
47
- logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")
 
 
48
 
49
  RUNWAYML_SDK_IMPORTED = False
50
- RunwayMLAPIClient = None
51
  try:
52
- from runwayml import RunwayML as ImportedRunwayMLClient
53
  RunwayMLAPIClient = ImportedRunwayMLClient
54
  RUNWAYML_SDK_IMPORTED = True
55
  logger.info("RunwayML SDK imported successfully.")
56
  except ImportError:
57
  logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
58
- except Exception as e_runway_sdk:
59
- logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk}. RunwayML features disabled.")
60
 
61
 
62
  class VisualEngine:
 
 
 
 
 
 
 
 
63
  def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
64
  self.output_dir = output_dir
65
  os.makedirs(self.output_dir, exist_ok=True)
66
- self.font_filename = "DejaVuSans-Bold.ttf"
 
67
  font_paths_to_try = [
68
- self.font_filename,
69
- "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
70
- "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
71
- "/System/Library/Fonts/Supplemental/Arial.ttf",
72
- "C:/Windows/Fonts/arial.ttf",
73
- "/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"
74
  ]
75
- self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
76
- self.font_size_pil = 20
77
- self.video_overlay_font_size = 30
78
- self.video_overlay_font_color = 'white'
79
- self.video_overlay_font = 'DejaVu-Sans-Bold'
80
- try:
81
- if self.font_path_pil:
82
- self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil)
83
- logger.info(f"Pillow font: {self.font_path_pil}.")
84
- else:
85
- self.font = ImageFont.load_default()
86
- logger.warning("Default Pillow font.")
87
- self.font_size_pil = 10
88
- except IOError as e_font:
89
- logger.error(f"Pillow font IOError: {e_font}. Default.")
90
- self.font = ImageFont.load_default()
91
- self.font_size_pil = 10
92
-
93
- self.openai_api_key = None
94
- self.USE_AI_IMAGE_GENERATION = False
95
- self.dalle_model = "dall-e-3"
96
- self.image_size_dalle3 = "1792x1024"
 
 
97
  self.video_frame_size = (1280, 720)
98
 
99
- self.elevenlabs_api_key = None
100
- self.USE_ELEVENLABS = False
101
- self.elevenlabs_client = None
102
  self.elevenlabs_voice_id = default_elevenlabs_voice_id
103
  if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
104
- self.elevenlabs_voice_settings = VoiceSettings(
105
- stability=0.60,
106
- similarity_boost=0.80,
107
- style=0.15,
108
- use_speaker_boost=True
109
- )
110
- else:
111
- self.elevenlabs_voice_settings = None
112
 
113
- self.pexels_api_key = None
114
- self.USE_PEXELS = False
115
 
116
- self.runway_api_key = None
117
- self.USE_RUNWAYML = False
118
- self.runway_client = None
119
- if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
120
  try:
121
- if os.getenv("RUNWAYML_API_SECRET"):
122
- self.runway_client = RunwayMLAPIClient()
123
- logger.info("RunwayML Client initialized using RUNWAYML_API_SECRET env var.")
124
- except Exception as e_runway_init:
125
- logger.error(f"Failed to initialize RunwayML client during __init__: {e_runway_init}", exc_info=True)
126
-
 
127
  logger.info("VisualEngine initialized.")
128
 
129
- def set_openai_api_key(self, k):
130
- self.openai_api_key = k
131
- self.USE_AI_IMAGE_GENERATION = bool(k)
132
- logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
133
 
134
  def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
135
  self.elevenlabs_api_key = api_key
136
- if voice_id_from_secret:
137
- self.elevenlabs_voice_id = voice_id_from_secret
138
  if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
139
  try:
140
  self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
141
  self.USE_ELEVENLABS = bool(self.elevenlabs_client)
142
- logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
143
  except Exception as e:
144
- logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True)
145
- self.USE_ELEVENLABS = False
146
  else:
147
  self.USE_ELEVENLABS = False
148
- logger.info("ElevenLabs Disabled (no key or SDK issue).")
149
 
150
- def set_pexels_api_key(self, k):
151
- self.pexels_api_key = k
152
- self.USE_PEXELS = bool(k)
153
- logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
154
 
155
- def set_runway_api_key(self, k):
156
- self.runway_api_key = k
157
- if k:
158
  if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
159
- if not self.runway_client:
160
  try:
161
- if not os.getenv("RUNWAYML_API_SECRET"):
162
- os.environ["RUNWAYML_API_SECRET"] = k
163
- logger.info("Setting RUNWAYML_API_SECRET env var from provided key.")
164
- self.runway_client = RunwayMLAPIClient()
165
- self.USE_RUNWAYML = True
166
- logger.info("RunwayML Client initialized successfully via set_runway_api_key.")
 
 
 
 
 
 
 
 
 
167
  except Exception as e_client_init:
168
- logger.error(f"RunwayML Client init failed in set_runway_api_key: {e_client_init}", exc_info=True)
169
- self.USE_RUNWAYML = False
170
- else:
171
  self.USE_RUNWAYML = True
172
- logger.info("RunwayML Client was already initialized.")
173
- else:
174
- logger.warning("RunwayML SDK not imported. API key set, but integration requires SDK.")
175
  self.USE_RUNWAYML = False
176
- else:
177
- self.USE_RUNWAYML = False
178
- logger.info("RunwayML Disabled (no API key).")
179
 
 
180
  def _image_to_data_uri(self, image_path):
181
  try:
182
  mime_type, _ = mimetypes.guess_type(image_path)
183
  if not mime_type:
184
  ext = os.path.splitext(image_path)[1].lower()
185
- if ext == ".png":
186
- mime_type = "image/png"
187
- elif ext in [".jpg", ".jpeg"]:
188
- mime_type = "image/jpeg"
189
- else:
190
- mime_type = "application/octet-stream"
191
- logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.")
192
  with open(image_path, "rb") as image_file:
193
  encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
194
  data_uri = f"data:{mime_type};base64,{encoded_string}"
195
- logger.debug(f"Data URI for {image_path} (first 100): {data_uri[:100]}")
196
  return data_uri
 
 
 
197
  except Exception as e:
198
- logger.error(f"Error converting {image_path} to data URI: {e}", exc_info=True)
199
  return None
200
 
201
  def _map_resolution_to_runway_ratio(self, width, height):
202
  ratio_str = f"{width}:{height}"
203
- supported_ratios = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"]
204
- if ratio_str in supported_ratios:
 
205
  return ratio_str
206
- logger.warning(f"Res {ratio_str} not directly Gen-4 supported. Default 1280:720.")
 
207
  return "1280:720"
208
 
209
- def _get_text_dimensions(self, text_content, font_obj):
210
- default_char_height = getattr(font_obj, 'size', self.font_size_pil)
211
- if not text_content:
212
- return 0, default_char_height
213
  try:
214
- if hasattr(font_obj, 'getbbox'):
215
- bbox = font_obj.getbbox(text_content)
216
- w = bbox[2] - bbox[0]
217
- h = bbox[3] - bbox[1]
218
  return w, h if h > 0 else default_char_height
219
- elif hasattr(font_obj, 'getsize'):
220
- w, h = font_obj.getsize(text_content)
221
  return w, h if h > 0 else default_char_height
222
- else:
223
- return int(len(text_content) * default_char_height * 0.6), int(default_char_height * 1.2)
224
- except Exception as e:
225
- logger.warning(f"Error in _get_text_dimensions: {e}")
226
- return int(len(text_content) * self.font_size_pil * 0.6), int(self.font_size_pil * 1.2)
227
 
228
  def _create_placeholder_image_content(self, text_description, filename, size=None):
229
- if size is None:
230
- size = self.video_frame_size
231
- img = Image.new('RGB', size, color=(20, 20, 40))
232
- d = ImageDraw.Draw(img)
233
- padding = 25
234
- max_w = size[0] - (2 * padding)
235
- lines = []
236
- if not text_description:
237
- text_description = "(Placeholder Image)"
238
- words = text_description.split()
239
- current_line = ""
240
  for word_idx, word in enumerate(words):
241
- prospective_line_addition = word + (" " if word_idx < len(words) - 1 else "")
242
- test_line = current_line + prospective_line_addition
243
- current_line_width, _ = self._get_text_dimensions(test_line, self.font)
244
- if current_line_width == 0 and test_line.strip():
245
- current_line_width = len(test_line) * (self.font_size_pil * 0.6)
246
- if current_line_width <= max_w:
247
- current_line = test_line
248
  else:
249
- if current_line.strip():
250
- lines.append(current_line.strip())
251
- current_line = prospective_line_addition
252
- if current_line.strip():
253
- lines.append(current_line.strip())
254
  if not lines and text_description:
255
- avg_char_width, _ = self._get_text_dimensions("W", self.font)
256
- if avg_char_width == 0:
257
- avg_char_width = self.font_size_pil * 0.6
258
- chars_per_line = int(max_w / avg_char_width) if avg_char_width > 0 else 20
259
  lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
260
- elif not lines:
261
- lines.append("(Placeholder Error)")
262
- _, single_line_h = self._get_text_dimensions("Ay", self.font)
263
- single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
264
- max_lines_to_display = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1
265
- if max_lines_to_display <= 0:
266
- max_lines_to_display = 1
267
- y_text_start = padding + (size[1] - (2 * padding) - max_lines_to_display * (single_line_h + 2)) / 2.0
268
- y_text = y_text_start
269
- for i in range(max_lines_to_display):
270
- line_content = lines[i]
271
- line_w, _ = self._get_text_dimensions(line_content, self.font)
272
- if line_w == 0 and line_content.strip():
273
- line_w = len(line_content) * (self.font_size_pil * 0.6)
274
- x_text = (size[0] - line_w) / 2.0
275
- try:
276
- d.text((x_text, y_text), line_content, font=self.font, fill=(200, 200, 180))
277
- except Exception as e_draw:
278
- logger.error(f"Pillow d.text error: {e_draw} for line '{line_content}'")
279
- y_text += single_line_h + 2
280
- if i == 6 and max_lines_to_display > 7:
281
- try:
282
- d.text((x_text, y_text), "...", font=self.font, fill=(200, 200, 180))
283
- except Exception as e_ellipsis:
284
- logger.error(f"Pillow d.text ellipsis error: {e_ellipsis}")
285
- break
286
  filepath = os.path.join(self.output_dir, filename)
287
- try:
288
- img.save(filepath)
289
- return filepath
290
- except Exception as e:
291
- logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True)
292
- return None
293
 
294
  def _search_pexels_image(self, query, output_filename_base):
295
- # <<< CORRECTED METHOD >>>
296
- if not self.USE_PEXELS or not self.pexels_api_key:
297
- return None
298
  headers = {"Authorization": self.pexels_api_key}
299
  params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
300
- pexels_filename = output_filename_base.replace(".png", f"_pexels_{random.randint(1000,9999)}.jpg")\
301
- .replace(".mp4", f"_pexels_{random.randint(1000,9999)}.jpg")
302
  filepath = os.path.join(self.output_dir, pexels_filename)
303
  try:
304
- logger.info(f"Pexels search: '{query}'")
305
  effective_query = " ".join(query.split()[:5])
306
  params["query"] = effective_query
307
  response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
308
  response.raise_for_status()
309
  data = response.json()
310
  if data.get("photos") and len(data["photos"]) > 0:
311
- photo_url = data["photos"][0]["src"]["large2x"]
312
- image_response = requests.get(photo_url, timeout=60)
313
- image_response.raise_for_status()
314
- img_data = Image.open(io.BytesIO(image_response.content))
315
- if img_data.mode != 'RGB':
316
- img_data = img_data.convert('RGB')
317
- img_data.save(filepath)
318
- logger.info(f"Pexels image saved: {filepath}")
319
- return filepath
320
- else:
321
- logger.info(f"No photos found on Pexels for query: '{effective_query}'")
322
- return None
323
- except requests.exceptions.RequestException as e_req:
324
- logger.error(f"Pexels request error for query '{query}': {e_req}", exc_info=True)
325
- except json.JSONDecodeError as e_json:
326
- logger.error(f"Pexels JSON decode error for query '{query}': {e_json}", exc_info=True)
327
- except IOError as e_io:
328
- logger.error(f"Pexels image save error for query '{query}': {e_io}", exc_info=True)
329
- except Exception as e:
330
- logger.error(f"Unexpected Pexels error for query '{query}': {e}", exc_info=True)
331
- return None
332
-
333
- def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path,
334
- scene_identifier_filename_base, target_duration_seconds=5):
335
- if not self.USE_RUNWAYML or not self.runway_client:
336
- logger.warning("RunwayML not enabled/client not init. Skip video.")
337
  return None
338
  if not input_image_path or not os.path.exists(input_image_path):
339
- logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}")
340
  return None
 
341
  image_data_uri = self._image_to_data_uri(input_image_path)
342
- if not image_data_uri:
343
- return None
344
- runway_duration = 10 if target_duration_seconds > 7 else 5
345
- runway_ratio_str = self._map_resolution_to_runway_ratio(
346
- self.video_frame_size[0], self.video_frame_size[1]
347
- )
348
- output_video_filename = scene_identifier_filename_base.replace(
349
- ".png", f"_runway_gen4_d{runway_duration}s.mp4"
350
- )
351
  output_video_filepath = os.path.join(self.output_dir, output_video_filename)
352
- logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', "
353
- f"img='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
354
  try:
355
- task = self.runway_client.image_to_video.create(
 
356
  model='gen4_turbo',
357
  prompt_image=image_data_uri,
358
- prompt_text=text_prompt_for_motion,
359
  duration=runway_duration,
360
- ratio=runway_ratio_str
 
 
361
  )
362
- logger.info(f"Runway Gen-4 task ID: {task.id}. Polling...")
363
- poll_interval = 10
364
- max_polls = 36
365
- for _ in range(max_polls):
366
- time.sleep(poll_interval)
367
- task_details = self.runway_client.tasks.retrieve(id=task.id)
368
- logger.info(f"Runway task {task.id} status: {task_details.status}")
 
 
 
 
 
369
  if task_details.status == 'SUCCEEDED':
370
- output_url = (
371
- getattr(getattr(task_details, 'output', None), 'url', None)
372
- or (
373
- getattr(task_details, 'artifacts', None)
374
- and task_details.artifacts[0].url
375
- if task_details.artifacts and hasattr(task_details.artifacts[0], 'url')
376
- else None
377
- )
378
- or (
379
- getattr(task_details, 'artifacts', None)
380
- and task_details.artifacts[0].download_url
381
- if task_details.artifacts and hasattr(task_details.artifacts[0], 'download_url')
382
- else None
383
- )
384
- )
385
  if not output_url:
386
- logger.error(
387
- f"Runway task {task.id} SUCCEEDED, but no output URL in details: "
388
- f"{vars(task_details) if hasattr(task_details, '__dict__') else task_details}"
389
- )
390
  return None
391
- logger.info(f"Runway task {task.id} SUCCEEDED. Downloading from: {output_url}")
 
392
  video_response = requests.get(output_url, stream=True, timeout=300)
393
  video_response.raise_for_status()
394
  with open(output_video_filepath, 'wb') as f:
395
- for chunk in video_response.iter_content(chunk_size=8192):
396
- f.write(chunk)
397
- logger.info(f"Runway Gen-4 video saved: {output_video_filepath}")
398
  return output_video_filepath
399
- elif task_details.status in ['FAILED', 'ABORTED']:
400
- em = (
401
- getattr(task_details, 'error_message', None)
402
- or getattr(getattr(task_details, 'output', None), 'error', "Unknown error")
403
- )
404
- logger.error(f"Runway task {task.id} status: {task_details.status}. Error: {em}")
405
  return None
406
- logger.warning(f"Runway task {task.id} timed out.")
 
407
  return None
408
- except AttributeError as ae:
409
- logger.error(f"RunwayML SDK AttributeError: {ae}. SDK/methods might differ.", exc_info=True)
 
410
  return None
411
- except Exception as e:
412
- logger.error(f"Runway Gen-4 API error: {e}", exc_info=True)
413
  return None
414
 
415
- def _create_placeholder_video_content(self, td, fn, dur=4, sz=None):
416
- if sz is None:
417
- sz = self.video_frame_size
418
- fp = os.path.join(self.output_dir, fn)
419
- tc = None
420
- try:
421
- tc = TextClip(
422
- td,
423
- fontsize=50,
424
- color='white',
425
- font=self.video_overlay_font,
426
- bg_color='black',
427
- size=sz,
428
- method='caption'
429
- ).set_duration(dur)
430
- tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2)
431
- logger.info(f"Generic placeholder video: {fp}")
432
- return fp
433
- except Exception as e:
434
- logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True)
435
- return None
436
  finally:
437
- if tc and hasattr(tc, 'close'):
438
- tc.close()
439
-
440
- def generate_scene_asset(
441
- self,
442
- image_generation_prompt_text,
443
- motion_prompt_text_for_video,
444
- scene_data,
445
- scene_identifier_filename_base,
446
- generate_as_video_clip=False,
447
- runway_target_duration=5
448
- ):
449
  base_name, _ = os.path.splitext(scene_identifier_filename_base)
450
- asset_info = {
451
- 'path': None,
452
- 'type': 'none',
453
- 'error': True,
454
- 'prompt_used': image_generation_prompt_text,
455
- 'error_message': 'Asset generation init failed'
456
- }
457
  input_image_for_runway_path = None
 
458
  base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
459
  base_image_filepath = os.path.join(self.output_dir, base_image_filename)
460
-
 
 
461
  if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
462
- max_r = 2
 
463
  for att_n in range(max_r):
464
- try:
465
- logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...")
466
- cl = openai.OpenAI(api_key=self.openai_api_key, timeout=90.0)
467
- r = cl.images.generate(
468
- model=self.dalle_model,
469
- prompt=image_generation_prompt_text,
470
- n=1,
471
- size=self.image_size_dalle3,
472
- quality="hd",
473
- response_format="url",
474
- style="vivid"
475
- )
476
- iu = r.data[0].url
477
- rp = getattr(r.data[0], 'revised_prompt', None)
478
- if rp:
479
- logger.info(f"DALL-E revised: {rp[:70]}...")
480
- ir = requests.get(iu, timeout=120)
481
- ir.raise_for_status()
482
- id_img = Image.open(io.BytesIO(ir.content))
483
- if id_img.mode != 'RGB':
484
- id_img = id_img.convert('RGB')
485
- id_img.save(base_image_filepath)
486
- logger.info(f"DALL-E base img saved: {base_image_filepath}")
487
- input_image_for_runway_path = base_image_filepath
488
- asset_info = {
489
- 'path': base_image_filepath,
490
- 'type': 'image',
491
- 'error': False,
492
- 'prompt_used': image_generation_prompt_text,
493
- 'revised_prompt': rp
494
- }
495
- break
496
- except openai.RateLimitError as e:
497
- logger.warning(f"OpenAI RateLimit {att_n+1}:{e}. Retry...")
498
- time.sleep(5 * (att_n + 1))
499
- asset_info['error_message'] = str(e)
500
- except Exception as e:
501
- logger.error(f"DALL-E base img error: {e}", exc_info=True)
502
- asset_info['error_message'] = str(e)
503
- break
504
- if asset_info['error']:
505
- logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")
506
-
507
- if asset_info['error'] and self.USE_PEXELS:
508
- logger.info("Trying Pexels for base img.")
509
- pqt = scene_data.get('pexels_search_query_감독', f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}")
510
- pp = self._search_pexels_image(pqt, base_image_filename)
511
- if pp:
512
- input_image_for_runway_path = pp
513
- asset_info = {
514
- 'path': pp,
515
- 'type': 'image',
516
- 'error': False,
517
- 'prompt_used': f"Pexels:{pqt}"
518
- }
519
- else:
520
- current_em = asset_info.get('error_message', "")
521
- asset_info['error_message'] = (current_em + " Pexels failed for base.").strip()
522
-
523
- if asset_info['error']:
524
- logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.")
525
- ppt = asset_info.get('prompt_used', image_generation_prompt_text)
526
- php = self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...", base_image_filename)
527
- if php:
528
- input_image_for_runway_path = php
529
- asset_info = {
530
- 'path': php,
531
- 'type': 'image',
532
- 'error': False,
533
- 'prompt_used': ppt
534
- }
535
- else:
536
- current_em = asset_info.get('error_message', "")
537
- asset_info['error_message'] = (current_em + " Base placeholder failed.").strip()
538
-
539
  if generate_as_video_clip:
540
  if not input_image_for_runway_path:
541
- logger.error("RunwayML video: base img failed.")
542
- asset_info['error'] = True
543
- asset_info['error_message'] = (asset_info.get('error_message', "") + " Base img miss, Runway abort.").strip()
544
- asset_info['type'] = 'none'
545
- return asset_info
546
- if self.USE_RUNWAYML:
547
- logger.info(f"Runway Gen-4 video for {base_name} using base: {input_image_for_runway_path}")
548
- video_path = self._generate_video_clip_with_runwayml(
549
- motion_prompt_text_for_video,
550
- input_image_for_runway_path,
551
- base_name,
552
- runway_target_duration
553
- )
554
- if video_path and os.path.exists(video_path):
555
- asset_info = {
556
- 'path': video_path,
557
- 'type': 'video',
558
- 'error': False,
559
- 'prompt_used': motion_prompt_text_for_video,
560
- 'base_image_path': input_image_for_runway_path
561
- }
562
- else:
563
- logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.")
564
- asset_info['error'] = True
565
- asset_info['error_message'] = (
566
- asset_info.get('error_message', "Base img ok.") +
567
- " RunwayML video fail; use base img."
568
- ).strip()
569
- asset_info['path'] = input_image_for_runway_path
570
- asset_info['type'] = 'image'
571
- asset_info['prompt_used'] = image_generation_prompt_text
572
- else:
573
- logger.warning("RunwayML selected but disabled. Use base img.")
574
- asset_info['error'] = True
575
- asset_info['error_message'] = (
576
- asset_info.get('error_message', "Base img ok.") +
577
- " RunwayML disabled; use base img."
578
- ).strip()
579
- asset_info['path'] = input_image_for_runway_path
580
- asset_info['type'] = 'image'
581
- asset_info['prompt_used'] = image_generation_prompt_text
582
-
583
  return asset_info
584
 
585
  def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
586
- if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate:
587
- logger.info("11L skip.")
588
- return None
589
-
590
- afp = os.path.join(self.output_dir, output_filename)
591
-
592
- try:
593
- logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}...")
594
- asm = None
595
-
596
- # Determine which ElevenLabs streaming/non-streaming method to use
597
- if hasattr(self.elevenlabs_client, 'text_to_speech') and \
598
- hasattr(self.elevenlabs_client.text_to_speech, 'stream'):
599
- asm = self.elevenlabs_client.text_to_speech.stream
600
- logger.info("Using 11L .text_to_speech.stream()")
601
-
602
- elif hasattr(self.elevenlabs_client, 'generate_stream'):
603
- asm = self.elevenlabs_client.generate_stream
604
- logger.info("Using 11L .generate_stream()")
605
-
606
- elif hasattr(self.elevenlabs_client, 'generate'):
607
- logger.info("Using 11L .generate()")
608
- if Voice and self.elevenlabs_voice_settings:
609
- vp = Voice(
610
- voice_id=str(self.elevenlabs_voice_id),
611
- settings=self.elevenlabs_voice_settings
612
- )
613
- else:
614
- vp = str(self.elevenlabs_voice_id)
615
-
616
- ab = self.elevenlabs_client.generate(
617
- text=text_to_narrate,
618
- voice=vp,
619
- model="eleven_multilingual_v2"
620
- )
621
-
622
- with open(afp, "wb") as f:
623
- f.write(ab)
624
-
625
- logger.info(f"11L audio (non-stream): {afp}")
626
- return afp
627
-
628
- else:
629
- logger.error("No 11L audio method.")
630
- return None
631
-
632
- # If a streaming method is available:
633
- if asm:
634
- vps = {"voice_id": str(self.elevenlabs_voice_id)}
635
- if self.elevenlabs_voice_settings:
636
- if hasattr(self.elevenlabs_voice_settings, 'model_dump'):
637
- vps["voice_settings"] = self.elevenlabs_voice_settings.model_dump()
638
- elif hasattr(self.elevenlabs_voice_settings, 'dict'):
639
- vps["voice_settings"] = self.elevenlabs_voice_settings.dict()
640
- else:
641
- vps["voice_settings"] = self.elevenlabs_voice_settings
642
-
643
- adi = asm(
644
- text=text_to_narrate,
645
- model_id="eleven_multilingual_v2",
646
- **vps
647
- )
648
-
649
- with open(afp, "wb") as f:
650
- for c in adi:
651
- if c:
652
- f.write(c)
653
-
654
- logger.info(f"11L audio (stream): {afp}")
655
- return afp
656
-
657
- except Exception as e:
658
- logger.error(f"11L audio error: {e}", exc_info=True)
659
- return None
660
-
661
  def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
662
- if not asset_data_list:
663
- logger.warning("No assets for animatic.")
664
- return None
665
-
666
- processed_clips = []
667
- narration_clip = None
668
- final_clip = None
669
  logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
670
 
671
  for i, asset_info in enumerate(asset_data_list):
672
- asset_path = asset_info.get('path')
673
- asset_type = asset_info.get('type')
674
- scene_dur = asset_info.get('duration', 4.5)
675
- scene_num = asset_info.get('scene_num', i + 1)
676
- key_action = asset_info.get('key_action', '')
677
  logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
678
 
679
- if not (asset_path and os.path.exists(asset_path)):
680
- logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip.")
681
- continue
682
- if scene_dur <= 0:
683
- logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip.")
684
- continue
685
 
686
  current_scene_mvpy_clip = None
687
  try:
688
  if asset_type == 'image':
689
- pil_img = Image.open(asset_path)
690
- logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
691
  img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
692
- thumb = img_rgba.copy()
693
- rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling, 'LANCZOS') else Image.BILINEAR
694
- thumb.thumbnail(self.video_frame_size, rf)
695
-
696
- cv_rgba = Image.new('RGBA', self.video_frame_size, (0, 0, 0, 0))
697
- xo = (self.video_frame_size[0] - thumb.width) // 2
698
- yo = (self.video_frame_size[1] - thumb.height) // 2
699
- cv_rgba.paste(thumb, (xo, yo), thumb)
700
- final_rgb_pil = Image.new("RGB", self.video_frame_size, (0, 0, 0))
701
- final_rgb_pil.paste(cv_rgba, mask=cv_rgba.split()[3])
702
-
703
- dbg_path = os.path.join(self.output_dir, f"debug_PRE_NUMPY_S{scene_num}.png")
704
- final_rgb_pil.save(dbg_path)
705
- logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
706
-
707
- frame_np = np.array(final_rgb_pil, dtype=np.uint8)
708
- if not frame_np.flags['C_CONTIGUOUS']:
709
- frame_np = np.ascontiguousarray(frame_np, dtype=np.uint8)
710
  logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
711
-
712
- if frame_np.size == 0 or frame_np.ndim != 3 or frame_np.shape[2] != 3:
713
- logger.error(f"S{scene_num}: Invalid NumPy. Skip.")
714
- continue
715
-
716
- clip_base = ImageClip(frame_np, transparent=False).set_duration(scene_dur)
717
- mvpy_dbg_path = os.path.join(self.output_dir, f"debug_MOVIEPY_FRAME_S{scene_num}.png")
718
- clip_base.save_frame(mvpy_dbg_path, t=0.1)
719
- logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
720
-
721
  clip_fx = clip_base
722
- try:
723
- es = random.uniform(1.03, 1.08)
724
- clip_fx = clip_base.fx(
725
- vfx.resize,
726
- lambda t: 1 + (es - 1) * (t / scene_dur) if scene_dur > 0 else 1
727
- ).set_position('center')
728
- except Exception as e:
729
- logger.error(f"S{scene_num} Ken Burns error: {e}", exc_info=False)
730
-
731
  current_scene_mvpy_clip = clip_fx
732
-
733
  elif asset_type == 'video':
734
- src_clip = None
735
  try:
736
- src_clip = VideoFileClip(
737
- asset_path,
738
- target_resolution=(self.video_frame_size[1], self.video_frame_size[0]) if self.video_frame_size else None,
739
- audio=False
740
- )
741
- tmp_clip = src_clip
742
- if src_clip.duration != scene_dur:
743
- if src_clip.duration > scene_dur:
744
- tmp_clip = src_clip.subclip(0, scene_dur)
745
  else:
746
- if scene_dur / src_clip.duration > 1.5 and src_clip.duration > 0.1:
747
- tmp_clip = src_clip.loop(duration=scene_dur)
748
- else:
749
- tmp_clip = src_clip.set_duration(src_clip.duration)
750
- logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
751
- current_scene_mvpy_clip = tmp_clip.set_duration(scene_dur)
752
- if current_scene_mvpy_clip.size != list(self.video_frame_size):
753
- current_scene_mvpy_clip = current_scene_mvpy_clip.resize(self.video_frame_size)
754
- except Exception as e:
755
- logger.error(f"S{scene_num} Video load error '{asset_path}': {e}", exc_info=True)
756
- continue
757
  finally:
758
- if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip, 'close'):
759
- src_clip.close()
760
- else:
761
- logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip.")
762
- continue
763
-
764
  if current_scene_mvpy_clip and key_action:
765
  try:
766
- to_dur = min(current_scene_mvpy_clip.duration - 0.5,
767
- current_scene_mvpy_clip.duration * 0.8) if current_scene_mvpy_clip.duration > 0.5 else current_scene_mvpy_clip.duration
768
- to_start = 0.25
769
  if to_dur > 0:
770
- txt_c = TextClip(
771
- f"Scene {scene_num}\n{key_action}",
772
- fontsize=self.video_overlay_font_size,
773
- color=self.video_overlay_font_color,
774
- font=self.video_overlay_font,
775
- bg_color='rgba(10,10,20,0.7)',
776
- method='caption',
777
- align='West',
778
- size=(self.video_frame_size[0] * 0.9, None),
779
- kerning=-1,
780
- stroke_color='black',
781
- stroke_width=1.5
782
- ).set_duration(to_dur).set_start(to_start).set_position(('center', 0.92), relative=True)
783
- current_scene_mvpy_clip = CompositeVideoClip(
784
- [current_scene_mvpy_clip, txt_c],
785
- size=self.video_frame_size,
786
- use_bgclip=True
787
- )
788
- else:
789
- logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
790
- except Exception as e:
791
- logger.error(f"S{scene_num} TextClip error: {e}. No text.", exc_info=True)
792
-
793
- if current_scene_mvpy_clip:
794
- processed_clips.append(current_scene_mvpy_clip)
795
- logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
796
- except Exception as e:
797
- logger.error(f"MAJOR Error S{scene_num} ({asset_path}): {e}", exc_info=True)
798
  finally:
799
- if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip, 'close'):
800
- try:
801
- current_scene_mvpy_clip.close()
802
- except Exception:
803
- pass
804
-
805
- if not processed_clips:
806
- logger.warning("No clips processed. Abort.")
807
- return None
808
 
809
- td = 0.75
 
810
  try:
811
- logger.info(f"Concatenating {len(processed_clips)} clips.")
812
- if len(processed_clips) > 1:
813
- final_clip = concatenate_videoclips(processed_clips, padding=-td if td > 0 else 0, method="compose")
814
- elif processed_clips:
815
- final_clip = processed_clips[0]
816
- if not final_clip:
817
- logger.error("Concatenation failed.")
818
- return None
819
  logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
820
- if td > 0 and final_clip.duration > 0:
821
- if final_clip.duration > td * 2:
822
- final_clip = final_clip.fx(vfx.fadein, td).fx(vfx.fadeout, td)
823
- else:
824
- final_clip = final_clip.fx(vfx.fadein, min(td, final_clip.duration / 2.0))
825
- if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration > 0:
826
- try:
827
- narration_clip = AudioFileClip(overall_narration_path)
828
- final_clip = final_clip.set_audio(narration_clip)
829
- logger.info("Narration added.")
830
- except Exception as e:
831
- logger.error(f"Narration add error: {e}", exc_info=True)
832
- elif final_clip.duration <= 0:
833
- logger.warning("Video no duration. No audio.")
834
- if final_clip and final_clip.duration > 0:
835
- op = os.path.join(self.output_dir, output_filename)
836
- logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
837
- final_clip.write_videofile(
838
- op,
839
- fps=fps,
840
- codec='libx264',
841
- preset='medium',
842
- audio_codec='aac',
843
- temp_audiofile=os.path.join(
844
- self.output_dir, f'temp-audio-{os.urandom(4).hex()}.m4a'
845
- ),
846
- remove_temp=True,
847
- threads=os.cpu_count() or 2,
848
- logger='bar',
849
- bitrate="5000k",
850
- ffmpeg_params=["-pix_fmt", "yuv420p"]
851
- )
852
- logger.info(f"Video created:{op}")
853
- return op
854
- else:
855
- logger.error("Final clip invalid. No write.")
856
- return None
857
- except Exception as e:
858
- logger.error(f"Video write error: {e}", exc_info=True)
859
- return None
860
  finally:
861
  logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
862
  all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
863
  for clip_obj_to_close in all_clips_to_close:
864
  if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'):
865
- try:
866
- clip_obj_to_close.close()
867
- except Exception as e_close:
868
- logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}")
 
1
+ # core/visual_engine.py
2
  from PIL import Image, ImageDraw, ImageFont, ImageOps
3
  import base64
4
+ import mimetypes
 
 
 
5
  import numpy as np
6
  import os
7
  import openai
 
10
  import time
11
  import random
12
  import logging
 
13
 
14
+ # --- MoviePy Imports ---
15
+ from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
16
+ CompositeVideoClip, AudioFileClip)
17
+ import moviepy.video.fx.all as vfx
18
 
19
+ # --- MONKEY PATCH for Pillow/MoviePy compatibility ---
20
  try:
21
+ if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'): # Pillow 9+
22
+ if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
23
+ elif hasattr(Image, 'LANCZOS'): # Pillow 8
24
+ if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
25
+ elif not hasattr(Image, 'ANTIALIAS'): # Fallback if no common resampling attributes found
26
+ print("WARNING: Pillow version lacks common Resampling attributes or ANTIALIAS. MoviePy effects might fail or look different.")
27
+ except Exception as e_monkey_patch:
28
+ print(f"WARNING: An unexpected error occurred during Pillow ANTIALIAS monkey-patch: {e_monkey_patch}")
29
+
30
+ logger = logging.getLogger(__name__)
31
+ # Consider setting level in main app if not already configured:
32
+ # logger.setLevel(logging.DEBUG) # For very verbose output during debugging
33
+
34
+ # --- External Service Client Imports ---
35
  ELEVENLABS_CLIENT_IMPORTED = False
36
  ElevenLabsAPIClient = None
37
  Voice = None
 
43
  Voice = ImportedVoice
44
  VoiceSettings = ImportedVoiceSettings
45
  ELEVENLABS_CLIENT_IMPORTED = True
46
+ logger.info("ElevenLabs client components imported successfully.")
47
+ except ImportError:
48
+ logger.warning("ElevenLabs SDK not found (pip install elevenlabs). Audio generation will be disabled.")
49
+ except Exception as e_eleven_import:
50
+ logger.warning(f"Error importing ElevenLabs client components: {e_eleven_import}. Audio generation disabled.")
51
 
52
  RUNWAYML_SDK_IMPORTED = False
53
+ RunwayMLAPIClient = None # Using a more specific name for the client class
54
  try:
55
+ from runwayml import RunwayML as ImportedRunwayMLClient # Actual SDK import
56
  RunwayMLAPIClient = ImportedRunwayMLClient
57
  RUNWAYML_SDK_IMPORTED = True
58
  logger.info("RunwayML SDK imported successfully.")
59
  except ImportError:
60
  logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
61
+ except Exception as e_runway_sdk_import:
62
+ logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk_import}. RunwayML features disabled.")
63
 
64
 
65
  class VisualEngine:
66
+ DEFAULT_FONT_SIZE_PIL = 10 # For default Pillow font
67
+ PREFERRED_FONT_SIZE_PIL = 20 # For custom font
68
+ VIDEO_OVERLAY_FONT_SIZE = 30
69
+ VIDEO_OVERLAY_FONT_COLOR = 'white'
70
+ # Standard font names ImageMagick (used by TextClip) is likely to find in Linux containers
71
+ DEFAULT_MOVIEPY_FONT = 'DejaVu-Sans-Bold'
72
+ PREFERRED_MOVIEPY_FONT = 'Liberation-Sans-Bold' # Often available
73
+
74
  def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
75
  self.output_dir = output_dir
76
  os.makedirs(self.output_dir, exist_ok=True)
77
+
78
+ self.font_filename_pil = "DejaVuSans-Bold.ttf" # A more standard Linux font
79
  font_paths_to_try = [
80
+ self.font_filename_pil, # If in working dir or PATH
81
+ f"/usr/share/fonts/truetype/dejavu/{self.font_filename_pil}",
82
+ f"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", # Alternative
83
+ f"/System/Library/Fonts/Supplemental/Arial.ttf", # macOS fallback
84
+ f"C:/Windows/Fonts/arial.ttf", # Windows fallback
85
+ f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf" # User's previous custom path
86
  ]
87
+ self.font_path_pil_resolved = next((p for p in font_paths_to_try if os.path.exists(p)), None)
88
+
89
+ self.font_pil = ImageFont.load_default() # Default
90
+ self.current_font_size_pil = self.DEFAULT_FONT_SIZE_PIL
91
+
92
+ if self.font_path_pil_resolved:
93
+ try:
94
+ self.font_pil = ImageFont.truetype(self.font_path_pil_resolved, self.PREFERRED_FONT_SIZE_PIL)
95
+ self.current_font_size_pil = self.PREFERRED_FONT_SIZE_PIL
96
+ logger.info(f"Pillow font loaded: {self.font_path_pil_resolved} at size {self.current_font_size_pil}.")
97
+ # Determine MoviePy font based on loaded PIL font
98
+ if "dejavu" in self.font_path_pil_resolved.lower():
99
+ self.video_overlay_font = 'DejaVu-Sans-Bold'
100
+ elif "liberation" in self.font_path_pil_resolved.lower():
101
+ self.video_overlay_font = 'Liberation-Sans-Bold'
102
+ else: # Fallback if custom font doesn't have an obvious ImageMagick name
103
+ self.video_overlay_font = self.DEFAULT_MOVIEPY_FONT
104
+ except IOError as e_font_load:
105
+ logger.error(f"Pillow font loading IOError for '{self.font_path_pil_resolved}': {e_font_load}. Using default.")
106
+ else:
107
+ logger.warning("Custom Pillow font not found. Using default.")
108
+
109
+ self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False
110
+ self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
111
  self.video_frame_size = (1280, 720)
112
 
113
+ self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None
 
 
114
  self.elevenlabs_voice_id = default_elevenlabs_voice_id
115
  if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED:
116
+ self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
117
+ else: self.elevenlabs_voice_settings = None
 
 
 
 
 
 
118
 
119
+ self.pexels_api_key = None; self.USE_PEXELS = False
120
+ self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_ml_client_instance = None # More specific name
121
 
122
+ # Attempt to initialize Runway client if SDK is present and env var might be set
123
+ if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient and os.getenv("RUNWAYML_API_SECRET"):
 
 
124
  try:
125
+ self.runway_ml_client_instance = RunwayMLAPIClient() # SDK uses env var
126
+ self.USE_RUNWAYML = True # Assume enabled if client initializes
127
+ logger.info("RunwayML Client initialized from RUNWAYML_API_SECRET env var at startup.")
128
+ except Exception as e_runway_init_startup:
129
+ logger.error(f"Initial RunwayML client init failed (env var RUNWAYML_API_SECRET might be invalid): {e_runway_init_startup}")
130
+ self.USE_RUNWAYML = False
131
+
132
  logger.info("VisualEngine initialized.")
133
 
134
+ # --- API Key Setters ---
135
+ def set_openai_api_key(self, api_key):
136
+ self.openai_api_key = api_key; self.USE_AI_IMAGE_GENERATION = bool(api_key)
137
+ logger.info(f"DALL-E ({self.dalle_model}) status: {'Ready' if self.USE_AI_IMAGE_GENERATION else 'Disabled'}")
138
 
139
  def set_elevenlabs_api_key(self, api_key, voice_id_from_secret=None):
140
  self.elevenlabs_api_key = api_key
141
+ if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
 
142
  if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
143
  try:
144
  self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key)
145
  self.USE_ELEVENLABS = bool(self.elevenlabs_client)
146
+ logger.info(f"ElevenLabs Client status: {'Ready' if self.USE_ELEVENLABS else 'Failed Initialization'} (Using Voice ID: {self.elevenlabs_voice_id})")
147
  except Exception as e:
148
+ logger.error(f"ElevenLabs client initialization error: {e}. Service Disabled.", exc_info=True)
149
+ self.USE_ELEVENLABS = False; self.elevenlabs_client = None
150
  else:
151
  self.USE_ELEVENLABS = False
152
+ logger.info(f"ElevenLabs Service Disabled (API key not provided or SDK import issue).")
153
 
154
+ def set_pexels_api_key(self, api_key):
155
+ self.pexels_api_key = api_key; self.USE_PEXELS = bool(api_key)
156
+ logger.info(f"Pexels Search status: {'Ready' if self.USE_PEXELS else 'Disabled'}")
 
157
 
158
+ def set_runway_api_key(self, api_key):
159
+ self.runway_api_key = api_key # Store key regardless for potential direct HTTP use
160
+ if api_key:
161
  if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
162
+ if not self.runway_ml_client_instance: # If not already initialized by env var
163
  try:
164
+ # The RunwayML Python SDK expects the API key via the RUNWAYML_API_SECRET env var.
165
+ # If it's not set, we set it temporarily for client initialization.
166
+ original_env_secret = os.getenv("RUNWAYML_API_SECRET")
167
+ if not original_env_secret:
168
+ logger.info("Temporarily setting RUNWAYML_API_SECRET from provided key for SDK client init.")
169
+ os.environ["RUNWAYML_API_SECRET"] = api_key
170
+
171
+ self.runway_ml_client_instance = RunwayMLAPIClient()
172
+ self.USE_RUNWAYML = True # SDK client successfully initialized
173
+ logger.info("RunwayML Client initialized successfully using provided API key.")
174
+
175
+ if not original_env_secret: # Clean up if we set it
176
+ del os.environ["RUNWAYML_API_SECRET"]
177
+ logger.info("Cleared temporary RUNWAYML_API_SECRET env var.")
178
+
179
  except Exception as e_client_init:
180
+ logger.error(f"RunwayML Client initialization via set_runway_api_key failed: {e_client_init}", exc_info=True)
181
+ self.USE_RUNWAYML = False; self.runway_ml_client_instance = None
182
+ else: # Client was already initialized (likely via env var during __init__)
183
  self.USE_RUNWAYML = True
184
+ logger.info("RunwayML Client was already initialized (likely from env var). API key stored.")
185
+ else: # SDK not imported
186
+ logger.warning("RunwayML SDK not imported. API key stored, but integration requires SDK. Service effectively disabled.")
187
  self.USE_RUNWAYML = False
188
+ else: # No API key provided
189
+ self.USE_RUNWAYML = False; self.runway_ml_client_instance = None
190
+ logger.info("RunwayML Service Disabled (no API key provided).")
191
 
192
+ # --- Helper Methods ---
193
  def _image_to_data_uri(self, image_path):
194
  try:
195
  mime_type, _ = mimetypes.guess_type(image_path)
196
  if not mime_type:
197
  ext = os.path.splitext(image_path)[1].lower()
198
+ mime_map = {".png": "image/png", ".jpg": "image/jpeg", ".jpeg": "image/jpeg"}
199
+ mime_type = mime_map.get(ext, "application/octet-stream")
200
+ if mime_type == "application/octet-stream": logger.warning(f"Could not determine MIME type for {image_path}, using default.")
201
+
 
 
 
202
  with open(image_path, "rb") as image_file:
203
  encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
204
  data_uri = f"data:{mime_type};base64,{encoded_string}"
205
+ logger.debug(f"Generated data URI for {os.path.basename(image_path)} (first 100 chars): {data_uri[:100]}...")
206
  return data_uri
207
+ except FileNotFoundError:
208
+ logger.error(f"Image file not found at {image_path} for data URI conversion.")
209
+ return None
210
  except Exception as e:
211
+ logger.error(f"Error converting image {image_path} to data URI: {e}", exc_info=True)
212
  return None
213
 
214
  def _map_resolution_to_runway_ratio(self, width, height):
215
  ratio_str = f"{width}:{height}"
216
+ # Gen-4 supports: "1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"
217
+ supported_ratios_gen4 = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"]
218
+ if ratio_str in supported_ratios_gen4:
219
  return ratio_str
220
+ # Fallback or find closest - for now, strict matching or default
221
+ logger.warning(f"Resolution {ratio_str} not directly in Gen-4 supported list. Defaulting to 1280:720.")
222
  return "1280:720"
223
 
224
+ def _get_text_dimensions(self, text_content, font_object):
225
+ # (Robust version from before)
226
+ default_char_height = getattr(font_object, 'size', self.current_font_size_pil)
227
+ if not text_content: return 0, default_char_height
228
  try:
229
+ if hasattr(font_object,'getbbox'):
230
+ bbox=font_object.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
 
 
231
  return w, h if h > 0 else default_char_height
232
+ elif hasattr(font_object,'getsize'):
233
+ w,h=font_object.getsize(text_content)
234
  return w, h if h > 0 else default_char_height
235
+ else: return int(len(text_content)*default_char_height*0.6),int(default_char_height*1.2)
236
+ except Exception as e: logger.warning(f"Error in _get_text_dimensions: {e}"); return int(len(text_content)*self.current_font_size_pil*0.6),int(self.current_font_size_pil*1.2)
 
 
 
237
 
238
  def _create_placeholder_image_content(self, text_description, filename, size=None):
239
+ # (Corrected version from previous response)
240
+ if size is None: size = self.video_frame_size
241
+ img = Image.new('RGB', size, color=(20, 20, 40)); d = ImageDraw.Draw(img); padding = 25
242
+ max_w = size[0] - (2 * padding); lines = []
243
+ if not text_description: text_description = "(Placeholder Image)"
244
+ words = text_description.split(); current_line_text = ""
 
 
 
 
 
245
  for word_idx, word in enumerate(words):
246
+ prospective_addition = word + (" " if word_idx < len(words) - 1 else "")
247
+ test_line_text = current_line_text + prospective_addition
248
+ current_w, _ = self._get_text_dimensions(test_line_text, self.font_pil)
249
+ if current_w == 0 and test_line_text.strip(): current_w = len(test_line_text) * (self.current_font_size_pil * 0.6) # Estimate
250
+
251
+ if current_w <= max_w: current_line_text = test_line_text
 
252
  else:
253
+ if current_line_text.strip(): lines.append(current_line_text.strip())
254
+ current_line_text = prospective_addition # Start new line
255
+ if current_line_text.strip(): lines.append(current_line_text.strip())
256
+
 
257
  if not lines and text_description:
258
+ avg_char_w, _ = self._get_text_dimensions("W", self.font_pil); avg_char_w = avg_char_w or (self.current_font_size_pil * 0.6)
259
+ chars_per_line = int(max_w / avg_char_w) if avg_char_w > 0 else 20
 
 
260
  lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
261
+ elif not lines: lines.append("(Placeholder Error)")
262
+
263
+ _, single_line_h = self._get_text_dimensions("Ay", self.font_pil); single_line_h = single_line_h if single_line_h > 0 else self.current_font_size_pil + 2
264
+ max_lines = min(len(lines), (size[1] - (2 * padding)) // (single_line_h + 2)) if single_line_h > 0 else 1
265
+ max_lines = max(1, max_lines) # Ensure at least one line
266
+
267
+ y_pos = padding + (size[1] - (2 * padding) - max_lines * (single_line_h + 2)) / 2.0
268
+ for i in range(max_lines):
269
+ line_text = lines[i]; line_w, _ = self._get_text_dimensions(line_text, self.font_pil)
270
+ if line_w == 0 and line_text.strip(): line_w = len(line_text) * (self.current_font_size_pil * 0.6)
271
+ x_pos = (size[0] - line_w) / 2.0
272
+ try: d.text((x_pos, y_pos), line_text, font=self.font_pil, fill=(200, 200, 180))
273
+ except Exception as e_draw: logger.error(f"Pillow d.text error: {e_draw} for '{line_text}'")
274
+ y_pos += single_line_h + 2
275
+ if i == 6 and max_lines > 7:
276
+ try: d.text((x_pos, y_pos), "...", font=self.font_pil, fill=(200, 200, 180))
277
+ except Exception as e_elip: logger.error(f"Pillow d.text ellipsis error: {e_elip}"); break
 
 
 
 
 
 
 
 
 
278
  filepath = os.path.join(self.output_dir, filename)
279
+ try: img.save(filepath); return filepath
280
+ except Exception as e_save: logger.error(f"Saving placeholder image '{filepath}' error: {e_save}", exc_info=True); return None
 
 
 
 
281
 
282
  def _search_pexels_image(self, query, output_filename_base):
283
+ # <<< THIS IS THE CORRECTED METHOD >>>
284
+ if not self.USE_PEXELS or not self.pexels_api_key: return None
 
285
  headers = {"Authorization": self.pexels_api_key}
286
  params = {"query": query, "per_page": 1, "orientation": "landscape", "size": "large2x"}
287
+ base_name_for_pexels, _ = os.path.splitext(output_filename_base)
288
+ pexels_filename = base_name_for_pexels + f"_pexels_{random.randint(1000,9999)}.jpg"
289
  filepath = os.path.join(self.output_dir, pexels_filename)
290
  try:
291
+ logger.info(f"Pexels: Searching for '{query}'")
292
  effective_query = " ".join(query.split()[:5])
293
  params["query"] = effective_query
294
  response = requests.get("https://api.pexels.com/v1/search", headers=headers, params=params, timeout=20)
295
  response.raise_for_status()
296
  data = response.json()
297
  if data.get("photos") and len(data["photos"]) > 0:
298
+ photo_details = data["photos"][0]
299
+ photo_url = photo_details.get("src", {}).get("large2x")
300
+ if not photo_url: logger.warning(f"Pexels: 'large2x' URL missing for '{effective_query}'. Details: {photo_details}"); return None
301
+ image_response = requests.get(photo_url, timeout=60); image_response.raise_for_status()
302
+ img_data_pil = Image.open(io.BytesIO(image_response.content))
303
+ if img_data_pil.mode != 'RGB': img_data_pil = img_data_pil.convert('RGB')
304
+ img_data_pil.save(filepath); logger.info(f"Pexels: Image saved to {filepath}"); return filepath
305
+ else: logger.info(f"Pexels: No photos for '{effective_query}'."); return None
306
+ except requests.exceptions.RequestException as e_req: logger.error(f"Pexels: RequestException for '{query}': {e_req}", exc_info=False); return None # Less verbose for network
307
+ except Exception as e: logger.error(f"Pexels: General error for '{query}': {e}", exc_info=True); return None
308
+
309
+ # --- RunwayML Video Generation (Gen-4 Aligned with SDK) ---
310
+ def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
311
+ if not self.USE_RUNWAYML or not self.runway_ml_client_instance:
312
+ logger.warning("RunwayML not enabled or client not initialized. Cannot generate video clip.")
 
 
 
 
 
 
 
 
 
 
 
313
  return None
314
  if not input_image_path or not os.path.exists(input_image_path):
315
+ logger.error(f"Runway Gen-4 requires an input image. Path not provided or invalid: {input_image_path}")
316
  return None
317
+
318
  image_data_uri = self._image_to_data_uri(input_image_path)
319
+ if not image_data_uri: return None
320
+
321
+ runway_duration = 10 if target_duration_seconds >= 8 else 5 # Map to 5s or 10s for Gen-4
322
+ runway_ratio_str = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1])
323
+
324
+ # Use a more descriptive output filename for Runway videos
325
+ base_name_for_runway, _ = os.path.splitext(scene_identifier_filename_base)
326
+ output_video_filename = base_name_for_runway + f"_runway_gen4_d{runway_duration}s.mp4"
 
327
  output_video_filepath = os.path.join(self.output_dir, output_video_filename)
328
+
329
+ logger.info(f"Initiating Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', image='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
330
  try:
331
+ # Using the RunwayML Python SDK structure
332
+ task_submission = self.runway_ml_client_instance.image_to_video.create(
333
  model='gen4_turbo',
334
  prompt_image=image_data_uri,
335
+ prompt_text=text_prompt_for_motion, # This is the motion prompt
336
  duration=runway_duration,
337
+ ratio=runway_ratio_str,
338
+ # seed=random.randint(0, 4294967295), # Optional: for reproducibility
339
+ # Other Gen-4 params (motion_score, upscale, watermark etc. can be added here if available in SDK)
340
  )
341
+ task_id = task_submission.id
342
+ logger.info(f"Runway Gen-4 task created with ID: {task_id}. Polling for completion...")
343
+
344
+ poll_interval_seconds = 10
345
+ max_polling_duration_seconds = 6 * 60 # 6 minutes
346
+ start_time = time.time()
347
+
348
+ while time.time() - start_time < max_polling_duration_seconds:
349
+ time.sleep(poll_interval_seconds)
350
+ task_details = self.runway_ml_client_instance.tasks.retrieve(id=task_id)
351
+ logger.info(f"Runway task {task_id} status: {task_details.status}")
352
+
353
  if task_details.status == 'SUCCEEDED':
354
+ # Determine output URL (this structure might vary based on SDK version)
355
+ output_url = None
356
+ if hasattr(task_details, 'output') and task_details.output and hasattr(task_details.output, 'url'):
357
+ output_url = task_details.output.url
358
+ elif hasattr(task_details, 'artifacts') and task_details.artifacts and isinstance(task_details.artifacts, list) and len(task_details.artifacts) > 0:
359
+ first_artifact = task_details.artifacts[0]
360
+ if hasattr(first_artifact, 'url'): output_url = first_artifact.url
361
+ elif hasattr(first_artifact, 'download_url'): output_url = first_artifact.download_url
362
+
 
 
 
 
 
 
363
  if not output_url:
364
+ logger.error(f"Runway task {task_id} SUCCEEDED, but no output URL found. Details: {vars(task_details) if hasattr(task_details,'__dict__') else str(task_details)}")
 
 
 
365
  return None
366
+
367
+ logger.info(f"Runway task {task_id} SUCCEEDED. Downloading video from: {output_url}")
368
  video_response = requests.get(output_url, stream=True, timeout=300)
369
  video_response.raise_for_status()
370
  with open(output_video_filepath, 'wb') as f:
371
+ for chunk in video_response.iter_content(chunk_size=8192): f.write(chunk)
372
+ logger.info(f"Runway Gen-4 video successfully downloaded to: {output_video_filepath}")
 
373
  return output_video_filepath
374
+
375
+ elif task_details.status in ['FAILED', 'ABORTED', 'ERROR']: # Added ERROR
376
+ error_msg = getattr(task_details,'error_message',None) or getattr(getattr(task_details,'output',None),'error', "Unknown error from Runway task.")
377
+ logger.error(f"Runway task {task_id} final status: {task_details.status}. Error: {error_msg}")
 
 
378
  return None
379
+
380
+ logger.warning(f"Runway task {task_id} timed out polling after {max_polling_duration_seconds} seconds.")
381
  return None
382
+
383
+ except AttributeError as ae: # If SDK methods are not as expected
384
+ logger.error(f"AttributeError with RunwayML SDK: {ae}. Ensure SDK is up to date and methods/attributes match documentation.", exc_info=True)
385
  return None
386
+ except Exception as e_runway_call:
387
+ logger.error(f"General error during Runway Gen-4 API call or processing: {e_runway_call}", exc_info=True)
388
  return None
389
 
390
+ def _create_placeholder_video_content(self, text_description, filename, duration=4, size=None):
391
+ # (Keeping as before)
392
+ if size is None: size = self.video_frame_size; fp = os.path.join(self.output_dir, filename); tc = None
393
+ try: tc = TextClip(text_description, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=size, method='caption').set_duration(duration); tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2); logger.info(f"Generic placeholder video: {fp}"); return fp
394
+ except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395
  finally:
396
+ if tc and hasattr(tc, 'close'): tc.close()
397
+
398
+ # --- generate_scene_asset (Main asset generation logic using Runway Gen-4 workflow) ---
399
+ def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
400
+ scene_data, scene_identifier_filename_base,
401
+ generate_as_video_clip=False, runway_target_duration=5):
402
+ # (Logic updated for Runway Gen-4 workflow)
 
 
 
 
 
403
  base_name, _ = os.path.splitext(scene_identifier_filename_base)
404
+ asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
 
 
 
 
 
 
405
  input_image_for_runway_path = None
406
+ # Use a distinct name for the base image if it's only an intermediate step for video
407
  base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
408
  base_image_filepath = os.path.join(self.output_dir, base_image_filename)
409
+
410
+ # STEP 1: Generate/acquire the base image
411
+ # Try DALL-E
412
  if self.USE_AI_IMAGE_GENERATION and self.openai_api_key:
413
+ # ... (DALL-E logic as in previous full rewrite - condensed for brevity here)
414
+ max_r, att_n = 2,0;
415
  for att_n in range(max_r):
416
+ try:logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...");cl=openai.OpenAI(api_key=self.openai_api_key,timeout=90.0);r=cl.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid");iu=r.data[0].url;rp=getattr(r.data[0],'revised_prompt',None);
417
+ if rp:logger.info(f"DALL-E revised: {rp[:70]}...");ir=requests.get(iu,timeout=120);ir.raise_for_status();id_img=Image.open(io.BytesIO(ir.content));
418
+ if id_img.mode!='RGB':id_img=id_img.convert('RGB');id_img.save(base_image_filepath);logger.info(f"DALL-E base img saved: {base_image_filepath}");input_image_for_runway_path=base_image_filepath;asset_info={'path':base_image_filepath,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':rp};break
419
+ except openai.RateLimitError as e:logger.warning(f"OpenAI RateLimit {att_n+1}:{e}.Retry...");time.sleep(5*(att_n+1));asset_info['error_message']=str(e)
420
+ except Exception as e:logger.error(f"DALL-E base img error:{e}",exc_info=True);asset_info['error_message']=str(e);break
421
+ if asset_info['error']:logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")
422
+
423
+ if asset_info['error'] and self.USE_PEXELS: # Pexels Fallback
424
+ logger.info("Trying Pexels for base img.");pqt=scene_data.get('pexels_search_query_감독',f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}");pp=self._search_pexels_image(pqt,base_image_filename); # Use base_image_filename
425
+ if pp:input_image_for_runway_path=pp;asset_info={'path':pp,'type':'image','error':False,'prompt_used':f"Pexels:{pqt}"}
426
+ else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Pexels failed for base.").strip()
427
+
428
+ if asset_info['error']: # Placeholder Fallback
429
+ logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ppt=asset_info.get('prompt_used',image_generation_prompt_text);php=self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...",base_image_filename); # Use base_image_filename
430
+ if php:input_image_for_runway_path=php;asset_info={'path':php,'type':'image','error':False,'prompt_used':ppt}
431
+ else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Base placeholder failed.").strip()
432
+
433
+ # STEP 2: If video clip is requested, use the generated base image with RunwayML
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434
  if generate_as_video_clip:
435
  if not input_image_for_runway_path:
436
+ logger.error("RunwayML video: base image generation failed entirely. Cannot proceed.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"")+" Base img completely failed, Runway abort.").strip();asset_info['type']='none';return asset_info
437
+ if self.USE_RUNWAYML: # This check is now more about if the service is generally enabled
438
+ video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,input_image_for_runway_path,base_name,runway_target_duration) # Pass base_name for runway output filename
439
+ if video_path and os.path.exists(video_path):asset_info={'path':video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':input_image_for_runway_path}
440
+ else:logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML video step failed; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
441
+ else:logger.warning("RunwayML selected but not enabled/client not ready. Use base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442
  return asset_info
443
 
444
  def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
445
+ # (Keep as before - robust enough)
446
+ if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename)
447
+ try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None
448
+ if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()")
449
+ elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()")
450
+ elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2");
451
+ with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
452
+ else:logger.error("No 11L audio method.");return None
453
+ if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
454
+ if self.elevenlabs_voice_settings:
455
+ if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
456
+ elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
457
+ else:vps["voice_settings"]=self.elevenlabs_voice_settings
458
+ adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
459
+ with open(afp,"wb")as f:
460
+ for c in adi:
461
+ if c:f.write(c)
462
+ logger.info(f"11L audio (stream): {afp}");return afp
463
+ except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None
464
+
465
+ # --- assemble_animatic_from_assets (Still contains crucial debug saves for blank video issue) ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466
  def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
467
+ # (Keep the version with robust image processing, C-contiguous arrays, debug saves, and pix_fmt)
468
+ if not asset_data_list: logger.warning("No assets for animatic."); return None
469
+ processed_clips = []; narration_clip = None; final_clip = None
 
 
 
 
470
  logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
471
 
472
  for i, asset_info in enumerate(asset_data_list):
473
+ asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5)
474
+ scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '')
 
 
 
475
  logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
476
 
477
+ if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue
478
+ if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue
 
 
 
 
479
 
480
  current_scene_mvpy_clip = None
481
  try:
482
  if asset_type == 'image':
483
+ pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
 
484
  img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
485
+ thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf)
486
+ cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2
487
+ cv_rgba.paste(thumb,(xo,yo),thumb)
488
+ final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3])
489
+ dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
490
+ frame_np = np.array(final_rgb_pil,dtype=np.uint8);
491
+ if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8)
 
 
 
 
 
 
 
 
 
 
 
492
  logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
493
+ if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue
494
+ clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur)
495
+ mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
 
 
 
 
 
 
 
496
  clip_fx = clip_base
497
+ try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center')
498
+ except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False)
 
 
 
 
 
 
 
499
  current_scene_mvpy_clip = clip_fx
 
500
  elif asset_type == 'video':
501
+ src_clip=None
502
  try:
503
+ src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
504
+ tmp_clip=src_clip
505
+ if src_clip.duration!=scene_dur:
506
+ if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur)
 
 
 
 
 
507
  else:
508
+ if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur)
509
+ else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
510
+ current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur)
511
+ if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
512
+ except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue
 
 
 
 
 
 
513
  finally:
514
+ if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close()
515
+ else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue
516
+
 
 
 
517
  if current_scene_mvpy_clip and key_action:
518
  try:
519
+ to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
520
+ to_start=0.25
 
521
  if to_dur > 0:
522
+ txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True)
523
+ current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True)
524
+ else: logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
525
+ except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True)
526
+ if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
527
+ except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528
  finally:
529
+ if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
530
+ try: current_scene_mvpy_clip.close()
531
+ except: pass
 
 
 
 
 
 
532
 
533
+ if not processed_clips:logger.warning("No clips processed. Abort.");return None
534
+ td=0.75
535
  try:
536
+ logger.info(f"Concatenating {len(processed_clips)} clips.");
537
+ if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose")
538
+ elif processed_clips:final_clip=processed_clips[0]
539
+ if not final_clip:logger.error("Concatenation failed.");return None
 
 
 
 
540
  logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
541
+ if td>0 and final_clip.duration>0:
542
+ if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td)
543
+ else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0))
544
+ if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0:
545
+ try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.")
546
+ except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True)
547
+ elif final_clip.duration<=0:logger.warning("Video no duration. No audio.")
548
+ if final_clip and final_clip.duration>0:
549
+ op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
550
+ final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
551
+ logger.info(f"Video created:{op}");return op
552
+ else:logger.error("Final clip invalid. No write.");return None
553
+ except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
554
  finally:
555
  logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
556
  all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else [])
557
  for clip_obj_to_close in all_clips_to_close:
558
  if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'):
559
+ try: clip_obj_to_close.close()
560
+ except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}")