image / app.py
mgbam's picture
Update app.py
ab9c414 verified
raw
history blame
3.15 kB
import torch
from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
from diffusers import AutoencoderKL
import numpy as np
import gradio as gr
# Configure device and attention implementation
device = "cuda" if torch.cuda.is_available() else "cpu"
attn_implementation = "flash_attention_2" if device == "cuda" else "eager"
print(f"Using device: {device} with {attn_implementation}")
# Initialize medical imaging components
def load_medical_models():
try:
processor = VLChatProcessor.from_pretrained("deepseek-ai/Janus-1.3B")
model = MultiModalityCausalLM.from_pretrained(
"deepseek-ai/Janus-1.3B",
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
attn_implementation=attn_implementation,
use_flash_attention_2=(attn_implementation == "flash_attention_2")
).to(device).eval()
vae = AutoencoderKL.from_pretrained(
"stabilityai/sdxl-vae",
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
).to(device).eval()
return processor, model, vae
except Exception as e:
print(f"Error loading medical models: {str(e)}")
raise
processor, model, vae = load_medical_models()
# Medical image analysis function with attention control
def medical_analysis(image, question, seed=42):
try:
torch.manual_seed(seed)
np.random.seed(seed)
if isinstance(image, np.ndarray):
image = Image.fromarray(image).convert("RGB")
inputs = processor(
text=f"<medical_query>{question}</medical_query>",
images=[image],
return_tensors="pt"
).to(device)
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.1,
top_p=0.95,
pad_token_id=processor.tokenizer.eos_token_id
)
return processor.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
return f"Radiology analysis error: {str(e)}"
# Medical interface
with gr.Blocks(title="Medical Imaging Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown("""# AI Radiology Assistant
**CT/MRI/X-ray Analysis System**""")
with gr.Tab("Diagnostic Imaging"):
with gr.Row():
med_image = gr.Image(label="DICOM Image", type="pil")
med_question = gr.Textbox(label="Clinical Query",
placeholder="Describe findings in this CT scan...")
analysis_btn = gr.Button("Analyze", variant="primary")
report_output = gr.Textbox(label="Radiology Report", interactive=False)
med_question.submit(
medical_analysis,
inputs=[med_image, med_question],
outputs=report_output
)
analysis_btn.click(
medical_analysis,
inputs=[med_image, med_question],
outputs=report_output
)
demo.launch(server_name="0.0.0.0", server_port=7860)