Spaces:
Sleeping
Sleeping
File size: 24,424 Bytes
621bf08 702fd23 3c12225 702fd23 3c12225 621bf08 aa5de1c 2bfad86 42cedbb 5c746f8 621bf08 08839d3 3c12225 08839d3 42cedbb 702fd23 08839d3 3c12225 621bf08 606b2ad 9c2d4ce 3c12225 606b2ad 3c12225 702fd23 606b2ad 702fd23 606b2ad 9c2d4ce 42cedbb 621bf08 42cedbb 9c2d4ce 0c28ab5 3c12225 0c28ab5 9c2d4ce 3c12225 42cedbb 606b2ad 702fd23 42cedbb 3c12225 621bf08 702fd23 42cedbb 3c12225 702fd23 3c12225 42cedbb 702fd23 42cedbb 702fd23 42cedbb 702fd23 42cedbb 3c12225 702fd23 42cedbb 702fd23 42cedbb 702fd23 42cedbb 702fd23 08839d3 702fd23 3c12225 621bf08 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 702fd23 42cedbb 702fd23 42cedbb 702fd23 9c2d4ce 702fd23 42cedbb 702fd23 3c12225 42cedbb 702fd23 42cedbb 702fd23 42cedbb 9c2d4ce 702fd23 3c12225 702fd23 3c12225 702fd23 9c2d4ce 702fd23 3c12225 42cedbb 702fd23 42cedbb 702fd23 9c2d4ce 702fd23 42cedbb 702fd23 42cedbb 702fd23 9c2d4ce 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 9c2d4ce 0c28ab5 702fd23 3c12225 702fd23 3c12225 9c2d4ce 702fd23 9c2d4ce 702fd23 9c2d4ce 702fd23 9c2d4ce 702fd23 9c2d4ce 702fd23 3c12225 9c2d4ce 702fd23 606b2ad 9c2d4ce 702fd23 9c2d4ce 3c12225 702fd23 9c2d4ce 702fd23 9c2d4ce 0c28ab5 702fd23 42cedbb 702fd23 42cedbb 3c12225 42cedbb 702fd23 08839d3 702fd23 08839d3 42cedbb 702fd23 42cedbb 702fd23 42cedbb 702fd23 42cedbb 702fd23 42cedbb 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 702fd23 42cedbb 9c2d4ce 702fd23 42cedbb 702fd23 42cedbb 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 702fd23 42cedbb 3c12225 42cedbb 702fd23 621bf08 9c2d4ce 702fd23 42cedbb 702fd23 aa5de1c 702fd23 42cedbb 702fd23 3c12225 42cedbb 702fd23 42cedbb 702fd23 42cedbb 702fd23 42cedbb 702fd23 42cedbb 9c2d4ce 3c12225 702fd23 3c12225 621bf08 702fd23 0c28ab5 702fd23 3c12225 702fd23 3c12225 702fd23 08839d3 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 702fd23 3c12225 702fd23 0c28ab5 702fd23 0c28ab5 702fd23 42cedbb 702fd23 42cedbb 702fd23 42cedbb aa5de1c 702fd23 2bfad86 702fd23 42cedbb aa5de1c 702fd23 0c28ab5 702fd23 2bfad86 3c12225 42cedbb 3c12225 42cedbb 5c746f8 aa5de1c 702fd23 42cedbb aa5de1c 702fd23 3c12225 9c2d4ce 3c12225 9c2d4ce 702fd23 9c2d4ce 702fd23 9c2d4ce 702fd23 9c2d4ce 42cedbb 2bfad86 702fd23 0c28ab5 42cedbb 702fd23 9c2d4ce 702fd23 9c2d4ce 42cedbb 5c746f8 702fd23 3c12225 702fd23 aa5de1c 702fd23 ebc3520 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
"""
AI Video Studio (Runway Gen-4 / Gen-4 Turbo + Gemini + Tavily + ElevenLabs + Runway Audio Fallback)
Features:
- Quality Mode: choose 'gen4' (higher fidelity) or 'gen4_turbo' (faster iteration). Gen-4 / Turbo accept 5s or 10s durations only.
- Structured scene schema (Subject | Action | Camera | Lighting | Mood | Style) -> merged prompt.
- Multi-keyframe support (upload 1β4 images); automatic ratio cropping to supported Runway aspect ratios.
- ElevenLabs TTS with: pagination, retry, streaming/non-streaming, adjustable stability/similarity/style/speaker boost.
- Hard fallback default voice ID (env ELEVEN_DEFAULT_VOICE_ID) if dropdown fetch fails.
- Runway audio silent fallback placeholder (stub) if all TTS fails (replace later with real Runway audio call if available).
- Sharpness (edge density) heuristic; one automatic re-generation with detail suffix for blurry clips.
- Clean temporary file housekeeping; robust logging & progress reporting.
Environment Variables (required):
GEMINI_API_KEY
TAVILY_API_KEY
RUNWAY_API_KEY (or RUNWAYML_API_SECRET)
Optional:
ELEVENLABS_API_KEY (or XI_API_KEY)
ELEVEN_DEFAULT_VOICE_ID (fallback voice id)
Security: NEVER hard-code real API keys in this file.
"""
import os
import json
import time
import random
import logging
import subprocess
import base64
from pathlib import Path
from typing import List, Dict, Any, Optional
import gradio as gr
from PIL import Image, ImageDraw, ImageFont, ImageFilter
import numpy as np
# External SDKs
import google.generativeai as genai
from tavily import TavilyClient
from runwayml import RunwayML
import httpx
# ---- ElevenLabs (version-agnostic import) ----
try:
from elevenlabs import ElevenLabs
try:
from elevenlabs.errors import ApiError # may not exist in some versions
except Exception:
ApiError = Exception
except ImportError:
ElevenLabs = None
ApiError = Exception
# ---------------- Logging ----------------
logging.basicConfig(
level=logging.INFO,
format="[%(levelname)s %(asctime)s] %(message)s",
datefmt="%H:%M:%S"
)
log = logging.getLogger("ai_video_studio")
# ---------------- Environment / Keys ----------------
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
RUNWAY_KEY = os.getenv("RUNWAY_API_KEY") or os.getenv("RUNWAYML_API_SECRET")
ELEVEN_KEY = os.getenv("ELEVENLABS_API_KEY") or os.getenv("XI_API_KEY")
required_missing = [k for k, v in {
"GEMINI_API_KEY": GEMINI_API_KEY,
"TAVILY_API_KEY": TAVILY_API_KEY,
"RUNWAY_API_KEY": RUNWAY_KEY
}.items() if not v]
if required_missing:
raise RuntimeError(f"Missing required API keys: {', '.join(required_missing)}")
genai.configure(api_key=GEMINI_API_KEY)
tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
runway_client = RunwayML(api_key=RUNWAY_KEY)
eleven_client = ElevenLabs(api_key=ELEVEN_KEY) if (ELEVEN_KEY and ElevenLabs) else None
# ---------------- Constants ----------------
DEFAULT_SCENES = 4
MAX_SCENES = 8
ALLOWED_DURATIONS = {5, 10} # Runway Gen-4 / Turbo durations (5 or 10 seconds) :contentReference[oaicite:0]{index=0}:contentReference[oaicite:1]{index=1}
SUPPORTED_RATIOS = {"1280:720", "1584:672", "1104:832", "720:1280", "832:1104", "960:960"} # documented multiple aspect ratios :contentReference[oaicite:2]{index=2}
WORDS_PER_SEC = 2.5
PLACEHOLDER_BG = (16, 18, 24)
PLACEHOLDER_FG = (240, 242, 248)
FONT_CANDIDATES = [
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
"/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"
]
SHARPNESS_MIN = 0.015
RETRY_DETAIL_SUFFIX = "ultra-detailed textures, crisp focus, refined edges"
GLOBAL_STYLE = "cinematic, cohesive composition, natural volumetric light, filmic color grade, gentle camera motion, high detail"
# Fallback ElevenLabs voice ID (replace with your own or set env var)
DEFAULT_ELEVEN_VOICE_ID = os.getenv("ELEVEN_DEFAULT_VOICE_ID", "21m00Tcm4TlvDq8ikWAM") # example/published sample id
RUNWAY_AUDIO_FALLBACK = True # Placeholder stub (replace with real Runway audio generation when available)
# ---------------- Utility ----------------
def uid() -> str:
return f"{int(time.time())}_{random.randint(1000,9999)}"
def sanitize_filename(name: str) -> str:
safe = "".join(c for c in name if c.isalnum() or c in ("-","_"))[:60]
return safe or "video"
def load_font(size: int = 44):
for p in FONT_CANDIDATES:
if Path(p).exists():
try:
return ImageFont.truetype(p, size)
except Exception:
pass
return ImageFont.load_default()
def generate_placeholder_image(topic: str, width=768, height=432) -> str:
img = Image.new("RGB", (width, height), PLACEHOLDER_BG)
draw = ImageDraw.Draw(img)
font = load_font(44)
words = topic.split()
lines, line = [], []
max_chars = 26
for w in words:
test = " ".join(line + [w])
if len(test) > max_chars:
lines.append(" ".join(line)); line=[w]
else:
line.append(w)
if line: lines.append(" ".join(line))
# center vertically
metrics=[]; total_h=0
for ln in lines:
bbox = draw.textbbox((0,0), ln, font=font)
h=bbox[3]-bbox[1]
metrics.append((ln,h,bbox))
total_h += h+12
y=(height-total_h)//2
for ln,h,bbox in metrics:
w=bbox[2]-bbox[0]
x=(width-w)//2
draw.text((x,y), ln, fill=PLACEHOLDER_FG, font=font)
y+=h+12
out=f"placeholder_{uid()}.png"
img.save(out)
return out
def closest_supported_ratio(w: int, h: int) -> str:
candidates=[]
cur_ratio = w / h
for r in SUPPORTED_RATIOS:
rw,rh = map(int,r.split(":"))
diff = abs(cur_ratio - (rw/rh))
candidates.append((diff,r))
candidates.sort()
return candidates[0][1]
def crop_to_ratio(img: Image.Image, ratio: str) -> Image.Image:
rw,rh = map(int, ratio.split(":"))
target = rw / rh
w,h = img.size
cur = w / h
if abs(cur-target)<1e-3:
return img
if cur>target: # too wide
new_w=int(target*h)
x0=(w-new_w)//2
return img.crop((x0,0,x0+new_w,h))
else: # too tall
new_h=int(w/target)
y0=(h-new_h)//2
return img.crop((0,y0,w,y0+new_h))
def research_topic(topic: str) -> str:
try:
res = tavily_client.search(
query=f"Key facts & interesting points about {topic}",
search_depth="basic"
)
if res and "results" in res:
return "\n".join(
str(r.get("content","")).strip()
for r in res["results"] if r.get("content")
)
except Exception as e:
log.warning(f"Tavily failed: {e}")
return "No supplemental research facts available."
# ---------------- Gemini Script Generation ----------------
def gemini_script(topic: str, facts: str, scene_count: int) -> Dict[str,Any]:
"""
Request structured JSON with narration + scene objects containing schema fields.
"""
prompt = f"""
You are a creative director.
Topic: {topic}
Facts:
{facts}
Return STRICT JSON:
{{
"narration_script": "<cohesive narration (<= 230 words)>",
"scenes": [
{{
"subject": "...",
"action": "...",
"camera": "...",
"lighting": "...",
"mood": "...",
"style": "...",
"prompt": "<merged scene prompt (<=40 words)>"
}}
(exactly {scene_count} objects)
]
}}
Rules:
- Keep one consistent main subject across scenes unless evolution is explicitly helpful.
- camera: ONE motion (e.g. "slow dolly in", "handheld pan", "aerial sweep").
- lighting: descriptive & cinematic (e.g. "golden hour rim light").
- style: filmic adjectives (e.g. "35mm film grain, rich color palette").
- merged prompt must integrate key fields succinctly.
- No markdown, no lists, no commentary outside JSON.
"""
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content(prompt)
raw=(response.text or "").strip()
if raw.startswith("```"):
raw=raw.strip("`")
if raw.lower().startswith("json"):
raw=raw[4:].strip()
data=None
try:
data=json.loads(raw)
except json.JSONDecodeError:
s=raw.find("{"); e=raw.rfind("}")
if s!=-1 and e!=-1:
try: data=json.loads(raw[s:e+1])
except Exception: pass
if not isinstance(data,dict):
raise gr.Error("Gemini did not return valid JSON.")
narration=data.get("narration_script","").strip()
scenes=data.get("scenes",[])
if not narration:
raise gr.Error("Missing narration_script.")
norm=[]
for sc in scenes:
if not isinstance(sc,dict): continue
prompt_txt = sc.get("prompt") or ""
norm.append({
"subject": sc.get("subject",""),
"action": sc.get("action",""),
"camera": sc.get("camera",""),
"lighting": sc.get("lighting",""),
"mood": sc.get("mood",""),
"style": sc.get("style",""),
"prompt": prompt_txt[:160].strip()
})
while len(norm)<scene_count:
norm.append({
"subject":"main subject",
"action":"subtle motion",
"camera":"slow dolly in",
"lighting":"soft directional key light",
"mood":"cinematic",
"style":"filmic grain",
"prompt":f"Cinematic slow dolly in of main subject, soft directional light, filmic grain, {topic}"
})
norm=norm[:scene_count]
return {"narration": narration, "scenes": norm}
# ---------------- ElevenLabs Voice Handling ----------------
def fetch_voices_paginated(max_pages=5, page_size=50, delay=0.5) -> List[Dict[str,str]]:
if not eleven_client:
return []
voices=[]
token=None
for _ in range(max_pages):
try:
resp = eleven_client.voices.get_all(page_size=page_size, next_page_token=token)
except Exception as e:
log.error(f"Voice fetch error: {e}")
break
these = getattr(resp,"voices",[])
for v in these:
voices.append({"id": v.voice_id, "name": v.name})
token = getattr(resp,"next_page_token", None)
if not token:
break
time.sleep(delay)
log.info(f"Fetched {len(voices)} ElevenLabs voices.")
return voices
def tts_elevenlabs(text: str, voice_id: str, model_id: str,
stability: float, similarity: float,
style: float, speaker_boost: bool,
streaming: bool, out_path: str) -> bool:
if not eleven_client:
log.warning("ElevenLabs client not initialized.")
return False
if not voice_id:
log.warning("No voice_id provided for TTS.")
return False
try:
stability=max(0,min(1,stability))
similarity=max(0,min(1,similarity))
style=max(0,min(1,style))
settings = {
"stability": stability,
"similarity_boost": similarity,
"style": style,
"use_speaker_boost": speaker_boost
}
if streaming and hasattr(eleven_client.text_to_speech,"convert_as_stream"):
with open(out_path,"wb") as f:
for chunk in eleven_client.text_to_speech.convert_as_stream(
voice_id=voice_id,
model_id=model_id,
text=text,
optimize_streaming_latency=3,
voice_settings=settings
):
f.write(chunk)
else:
audio = eleven_client.text_to_speech.convert(
voice_id=voice_id,
model_id=model_id,
text=text,
voice_settings=settings
)
with open(out_path,"wb") as f:
f.write(audio)
# sanity size check
if os.path.getsize(out_path) < 800:
log.error("ElevenLabs audio too small; treating as failure.")
return False
return True
except ApiError as e:
log.error(f"ElevenLabs ApiError: {e}")
except Exception as e:
log.error(f"ElevenLabs TTS error: {e}")
return False
# ---------------- Runway Audio Fallback (placeholder silent track) ----------------
def runway_audio_fallback(text: str, out_path: str) -> bool:
if not RUNWAY_AUDIO_FALLBACK:
return False
try:
duration = max(2.0, min(300.0, len(text.split())/WORDS_PER_SEC))
subprocess.run([
"ffmpeg","-f","lavfi","-i","anullsrc=r=44100:cl=mono",
"-t", f"{duration:.2f}", "-q:a","9","-acodec","libmp3lame",
out_path,"-y"
], check=True)
return True
except Exception as e:
log.error(f"Runway audio fallback failed: {e}")
return False
def silent_track(narration: str, out_path: str):
duration = max(2.0, min(300.0, len(narration.split())/WORDS_PER_SEC))
subprocess.run([
"ffmpeg","-f","lavfi","-i","anullsrc=r=44100:cl=mono",
"-t", f"{duration:.2f}", "-q:a","9","-acodec","libmp3lame",
out_path,"-y"
], check=True)
# ---------------- Runway Video Generation ----------------
def runway_generate_clip(model: str, prompt_image: str, text_prompt: str,
duration: int, ratio: str, max_wait=360) -> str:
try:
task = runway_client.image_to_video.create(
model=model,
prompt_image=prompt_image,
prompt_text=text_prompt,
duration=duration,
ratio=ratio
) # API pattern for gen4 / turbo image-to-video :contentReference[oaicite:3]{index=3}:contentReference[oaicite:4]{index=4}
except Exception as e:
raise gr.Error(f"Runway task creation failed: {e}")
waited=0; interval=5
while True:
task = runway_client.tasks.retrieve(id=task.id)
status = getattr(task,"status",None)
if status=="SUCCEEDED":
break
if status=="FAILED":
raise gr.Error(f"Runway generation failed: {getattr(task,'error','Unknown error')}")
time.sleep(interval); waited+=interval
if waited>=max_wait:
raise gr.Error("Runway generation timeout.")
outputs = getattr(task,"output",None)
if not outputs or not isinstance(outputs,list):
raise gr.Error("Runway returned no outputs.")
video_url = outputs[0]
clip_path=f"runway_clip_{uid()}.mp4"
with httpx.stream("GET", video_url, timeout=240) as r:
r.raise_for_status()
with open(clip_path,"wb") as f:
for chunk in r.iter_bytes():
f.write(chunk)
return clip_path
# ---------------- Sharpness Heuristic ----------------
def clip_edge_density(path: str) -> float:
# Quick heuristic using FFmpeg + PIL (avoid heavy deps if opencv absent)
try:
tmp = f"frame_{uid()}.png"
subprocess.run([
"ffmpeg","-i",path,"-vf","scale=320:-1","-vframes","1",tmp,"-y"
], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
img = Image.open(tmp).convert("L")
arr = np.array(img.filter(ImageFilter.FIND_EDGES))
val = arr.mean()/255.0
os.remove(tmp)
return val
except Exception:
return 1.0 # assume acceptable if analysis fails
# ---------------- Concatenate & Mux ----------------
def concat_and_mux(video_paths: List[str], audio_path: str, out_path: str):
list_file=f"concat_{uid()}.txt"
with open(list_file,"w") as lf:
for p in video_paths:
lf.write(f"file '{p}'\n")
combined=f"combined_{uid()}.mp4"
subprocess.run([
"ffmpeg","-f","concat","-safe","0","-i",list_file,
"-c","copy",combined,"-y"
],check=True)
subprocess.run([
"ffmpeg","-i",combined,"-i",audio_path,
"-c:v","copy","-c:a","aac","-shortest",out_path,"-y"
],check=True)
for p in (list_file,combined):
try: os.remove(p)
except OSError: pass
# ---------------- Prompt Assembly ----------------
def build_scene_prompt(sc: Dict[str,str]) -> str:
merged = sc.get("prompt") or ""
if merged:
return f"{merged}. {GLOBAL_STYLE}"
base = f"{sc['subject']} {sc['action']}, {sc['camera']}, {sc['lighting']}, {sc['mood']}, {sc['style']}"
return f"{base}. {GLOBAL_STYLE}"
# ---------------- Main Pipeline ----------------
def generate_video(
topic: str,
keyframes: list,
scene_count: int,
clip_duration: int,
ratio: str,
quality_mode: bool,
voice_choice: Optional[str],
model_id: str,
stability: float,
similarity: float,
style: float,
speaker_boost: bool,
streaming_tts: bool,
progress=gr.Progress(track_tqdm=True)
) -> str:
job=uid()
log.info(f"[JOB {job}] topic='{topic}'")
temp_files=[]
try:
if not topic.strip():
raise gr.Error("Please enter a topic.")
scene_count = max(1,min(MAX_SCENES,scene_count))
if clip_duration not in ALLOWED_DURATIONS:
clip_duration=5
runway_model = "gen4" if quality_mode else "gen4_turbo" # trade speed vs fidelity :contentReference[oaicite:5]{index=5}:contentReference[oaicite:6]{index=6}
progress(0.05, desc="π Researching...")
facts = research_topic(topic)
progress(0.15, desc="π§ Scripting (Gemini)...")
script = gemini_script(topic, facts, scene_count)
narration = script["narration"]
scene_objs = script["scenes"]
progress(0.30, desc="ποΈ Narration (TTS)...")
audio_path=f"narration_{job}.mp3"
temp_files.append(audio_path)
# Determine voice id (UI or default fallback)
if voice_choice and "|" in voice_choice:
voice_id = voice_choice.split("|",1)[1].strip()
else:
voice_id = DEFAULT_ELEVEN_VOICE_ID
log.info(f"[JOB {job}] Using voice_id='{voice_id}' model_id='{model_id}' (quality={quality_mode})")
tts_ok=False
if ELEVEN_KEY and voice_id:
tts_ok = tts_elevenlabs(
narration, voice_id, model_id,
stability, similarity, style, speaker_boost,
streaming_tts, audio_path
)
if not tts_ok and RUNWAY_AUDIO_FALLBACK:
tts_ok = runway_audio_fallback(narration, audio_path)
if not tts_ok:
silent_track(narration, audio_path)
progress(0.40, desc="πΌοΈ Preparing keyframes...")
loaded_keyframes=[]
if keyframes:
for fp in keyframes[:4]:
try:
img=Image.open(fp).convert("RGB")
loaded_keyframes.append(img)
except Exception:
pass
if not loaded_keyframes:
placeholder = generate_placeholder_image(topic)
temp_files.append(placeholder)
loaded_keyframes=[Image.open(placeholder).convert("RGB")]
if ratio not in SUPPORTED_RATIOS:
ratio_choice = closest_supported_ratio(*loaded_keyframes[0].size)
else:
ratio_choice = ratio
processed=[]
for img in loaded_keyframes:
processed.append(crop_to_ratio(img, ratio_choice))
# Data URIs for Runway image_to_video
data_uris=[]
from io import BytesIO
for img in processed:
buf=BytesIO()
img.save(buf, format="PNG")
data_uris.append("data:image/png;base64,"+base64.b64encode(buf.getvalue()).decode("utf-8"))
video_clips=[]
for idx, sc in enumerate(scene_objs, start=1):
progress(0.40 + 0.45*idx/scene_count,
desc=f"π¬ Scene {idx}/{scene_count}...")
img_uri = data_uris[(idx-1)%len(data_uris)]
prompt_text = build_scene_prompt(sc)
clip_path = runway_generate_clip(
model=runway_model,
prompt_image=img_uri,
text_prompt=prompt_text,
duration=clip_duration,
ratio=ratio_choice
)
video_clips.append(clip_path); temp_files.append(clip_path)
sharp = clip_edge_density(clip_path)
if sharp < SHARPNESS_MIN:
log.info(f"Scene {idx} low sharpness ({sharp:.4f}) - retrying with detail boost")
retry_prompt = prompt_text + ", " + RETRY_DETAIL_SUFFIX
retry_clip = runway_generate_clip(
model=runway_model,
prompt_image=img_uri,
text_prompt=retry_prompt,
duration=clip_duration,
ratio=ratio_choice
)
video_clips[-1]=retry_clip
temp_files.append(retry_clip)
progress(0.92, desc="π§΅ Stitching & muxing...")
final_out=f"{sanitize_filename(topic)}_{job}.mp4"
concat_and_mux(video_clips, audio_path, final_out)
progress(1.0, desc="β
Complete")
log.info(f"[JOB {job}] done -> {final_out}")
return final_out
except Exception as e:
log.error(f"[JOB {job}] FAILED: {e}", exc_info=True)
raise gr.Error(f"Pipeline error: {e}")
finally:
# cleanup intermediates (keep final video)
for p in temp_files:
try:
if os.path.exists(p):
os.remove(p)
except OSError:
pass
# ---------------- UI Helpers ----------------
_cached_voices: List[str] = []
def refresh_voices():
global _cached_voices
voices = fetch_voices_paginated()
_cached_voices = [f"{v['name']}|{v['id']}" for v in voices]
return gr.update(choices=_cached_voices)
# ---------------- Gradio Interface ----------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π¬ AI Video Studio (Gen-4 / Turbo + Gemini + ElevenLabs)")
gr.Markdown(
"Iterate with Turbo, finalize with Gen-4. Upload up to 4 keyframes for stronger subject consistency."
)
with gr.Row():
topic = gr.Textbox(label="Video Topic", placeholder="e.g. The history of coffee", scale=3)
keyframes = gr.Files(label="Optional Keyframe Images (1β4)")
with gr.Row():
scene_count = gr.Slider(1, MAX_SCENES, value=DEFAULT_SCENES, step=1, label="Scenes")
clip_duration = gr.Radio(choices=sorted(list(ALLOWED_DURATIONS)), value=5, label="Seconds/Scene")
ratio = gr.Dropdown(choices=sorted(list(SUPPORTED_RATIOS)), value="1280:720", label="Aspect Ratio")
quality_mode = gr.Checkbox(label="Quality Mode (gen4 vs gen4_turbo)", value=False)
gr.Markdown("### Narration (ElevenLabs primary; fallback silent track)")
with gr.Row():
refresh_btn = gr.Button("π Refresh Voices")
voices_dd = gr.Dropdown(choices=[], label="ElevenLabs Voice (Name|ID)")
model_dd = gr.Dropdown(
choices=["eleven_turbo_v2_5","eleven_multilingual_v2","eleven_flash_v2_5","eleven_monolingual_v1"],
value="eleven_turbo_v2_5",
label="ElevenLabs Model"
)
streaming_chk = gr.Checkbox(label="Streaming TTS", value=False)
with gr.Row():
stability = gr.Slider(0,1,value=0.55,step=0.01,label="Stability")
similarity = gr.Slider(0,1,value=0.80,step=0.01,label="Similarity")
style = gr.Slider(0,1,value=0.25,step=0.01,label="Style")
speaker_boost = gr.Checkbox(label="Speaker Boost", value=True)
generate_btn = gr.Button("π Generate Video", variant="primary")
output_video = gr.Video(label="Final Video")
refresh_btn.click(fn=refresh_voices, outputs=voices_dd)
generate_btn.click(
fn=generate_video,
inputs=[
topic, keyframes, scene_count, clip_duration, ratio,
quality_mode, voices_dd, model_dd, stability, similarity,
style, speaker_boost, streaming_chk
],
outputs=output_video
)
gr.Markdown(
"### Tips\n"
"- Use detailed keyframes with clear subject & lighting.\n"
"- Add emotional descriptors directly in narration text for richer prosody.\n"
"- Iterate with Turbo then switch to Quality Mode to finalize.\n"
"- Adjust Stability/Similarity for expressiveness vs consistency."
)
if __name__ == '__main__':
demo.launch()
|