File size: 6,187 Bytes
0b86de1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import os
from detect import SimpleOfflineAccentClassifier
import ssl
import urllib3

urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
ssl._create_default_https_context = ssl._create_unverified_context
os.environ['CURL_CA_BUNDLE'] = ''
os.environ['REQUESTS_CA_BUNDLE'] = ''

import torch
import torchaudio
import librosa
import numpy as np
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
import soundfile as sf

class AccentClassifierApp:
    def __init__(self):
        self.classifier = HuggingFaceAccentClassifier()
        
    def classify_audio(self, audio_file):
        if audio_file is None:
            return "Please upload an audio file."
        
        try:
            result = self.classifier.predict_accent(audio_file)
            
            if result is None:
                return "Audio file processing failed."
            
            output = f"Predicted Accent: {result['accent']}\n"
            output += f"Confidence Score: {result['confidence']:.2%}\n\n"
            output += "All Probabilities:\n"
            
            sorted_probs = sorted(
                result['all_probabilities'].items(), 
                key=lambda x: x[1], 
                reverse=True
            )
            
            for accent, prob in sorted_probs:
                bar = "█" * int(prob * 20)
                output += f"- {accent}: {prob:.2%} {bar}\n"
            
            return output
            
        except Exception as e:
            return f"Error occurred: {str(e)}"
    
    def create_interface(self):
        with gr.Blocks(title="Accent Classifier") as interface:
            gr.Markdown("""

            # AI Accent Classifier

            

            This application analyzes speech audio files to predict accents.

            Supported formats: WAV, MP3, FLAC

            """)
            
            with gr.Row():
                with gr.Column():
                    audio_input = gr.Audio(
                        label="Upload Audio File",
                        type="filepath"
                    )
                    
                    classify_btn = gr.Button(
                        "Analyze Accent", 
                        variant="primary"
                    )
                
                with gr.Column():
                    output_text = gr.Markdown(
                        label="Analysis Results",
                        value="Analysis results will appear here..."
                    )
            
            gr.Markdown("### Example Audio Files")
            gr.Examples(
                examples=[
                    ["examples/american_sample.wav"],
                    ["examples/british_sample.wav"],
                ] if os.path.exists("examples") else [],
                inputs=audio_input
            )
            
            classify_btn.click(
                fn=self.classify_audio,
                inputs=audio_input,
                outputs=output_text
            )
        
        return interface

    def extract_acoustic_features(self, audio_path):
        try:
            y, sr = librosa.load(audio_path, sr=22050, duration=30)
            
            if len(y) == 0:
                return None
            
            min_length = sr * 2
            if len(y) < min_length:
                repeat_count = int(min_length / len(y)) + 1
                y = np.tile(y, repeat_count)[:min_length]
            
            features = {}
            
            n_fft = min(2048, len(y))
            hop_length = n_fft // 4
            
            try:
                mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, n_fft=n_fft, hop_length=hop_length)
                features['mfcc_mean'] = np.mean(mfccs, axis=1)
                features['mfcc_std'] = np.std(mfccs, axis=1)
            except Exception as e:
                features['mfcc_mean'] = np.zeros(13)
                features['mfcc_std'] = np.zeros(13)
            
            try:
                spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr, n_fft=n_fft, hop_length=hop_length)
                features['spectral_centroid'] = float(np.mean(spectral_centroids))
                features['spectral_centroid_std'] = float(np.std(spectral_centroids))
            except Exception as e:
                features['spectral_centroid'] = 1500.0
                features['spectral_centroid_std'] = 100.0
            
            try:
                pitches, magnitudes = librosa.piptrack(y=y, sr=sr, threshold=0.1, n_fft=n_fft, hop_length=hop_length)
                pitch_values = []
                for t in range(pitches.shape[1]):
                    index = magnitudes[:, t].argmax()
                    pitch = pitches[index, t]
                    if pitch > 0:
                        pitch_values.append(pitch)
                
                if pitch_values:
                    features['pitch_mean'] = float(np.mean(pitch_values))
                    features['pitch_std'] = float(np.std(pitch_values))
                else:
                    features['pitch_mean'] = 150.0
                    features['pitch_std'] = 20.0
            except Exception as e:
                features['pitch_mean'] = 150.0
                features['pitch_std'] = 20.0
            
            try:
                zcr = librosa.feature.zero_crossing_rate(y, hop_length=hop_length)
                features['zcr_mean'] = float(np.mean(zcr))
                features['zcr_std'] = float(np.std(zcr))
            except Exception as e:
                features['zcr_mean'] = 0.1
                features['zcr_std'] = 0.05
            
            return features
            
        except Exception as e:
            return None

def main():
    app = AccentClassifierApp()
    interface = app.create_interface()
    
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )

if __name__ == "__main__":
    main()