Spaces:
Sleeping
Sleeping
import librosa | |
import numpy as np | |
import os | |
import sys | |
class SimpleOfflineAccentClassifier: | |
def __init__(self): | |
self.accent_profiles = { | |
'American': { | |
'formant_f1_range': (300, 800), | |
'formant_f2_range': (1200, 2200), | |
'pitch_variance': 'medium', | |
'tempo_range': (140, 180), | |
'spectral_tilt': 'neutral' | |
}, | |
'British': { | |
'formant_f1_range': (280, 750), | |
'formant_f2_range': (1400, 2400), | |
'pitch_variance': 'low', | |
'tempo_range': (120, 160), | |
'spectral_tilt': 'high' | |
}, | |
'Australian': { | |
'formant_f1_range': (320, 850), | |
'formant_f2_range': (1100, 2000), | |
'pitch_variance': 'high', | |
'tempo_range': (130, 170), | |
'spectral_tilt': 'low' | |
}, | |
'Indian': { | |
'formant_f1_range': (350, 900), | |
'formant_f2_range': (1300, 2300), | |
'pitch_variance': 'high', | |
'tempo_range': (160, 200), | |
'spectral_tilt': 'neutral' | |
}, | |
'Canadian': { | |
'formant_f1_range': (290, 780), | |
'formant_f2_range': (1250, 2150), | |
'pitch_variance': 'medium', | |
'tempo_range': (135, 175), | |
'spectral_tilt': 'neutral' | |
} | |
} | |
def extract_acoustic_features(self, audio_path): | |
try: | |
y, sr = librosa.load(audio_path, sr=22050, duration=30) | |
if len(y) == 0: | |
return None | |
min_length = sr * 2 | |
if len(y) < min_length: | |
repeat_count = int(min_length / len(y)) + 1 | |
y = np.tile(y, repeat_count)[:min_length] | |
features = {} | |
n_fft = min(2048, len(y)) | |
hop_length = n_fft // 4 | |
try: | |
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, n_fft=n_fft, hop_length=hop_length) | |
features['mfcc_mean'] = np.mean(mfccs, axis=1) | |
features['mfcc_std'] = np.std(mfccs, axis=1) | |
except Exception as e: | |
features['mfcc_mean'] = np.zeros(13) | |
features['mfcc_std'] = np.zeros(13) | |
try: | |
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr, n_fft=n_fft, hop_length=hop_length) | |
features['spectral_centroid'] = float(np.mean(spectral_centroids)) | |
features['spectral_centroid_std'] = float(np.std(spectral_centroids)) | |
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr, n_fft=n_fft, hop_length=hop_length) | |
features['spectral_rolloff'] = float(np.mean(spectral_rolloff)) | |
spectral_bandwidth = librosa.feature.spectral_bandwidth(y=y, sr=sr, n_fft=n_fft, hop_length=hop_length) | |
features['spectral_bandwidth'] = float(np.mean(spectral_bandwidth)) | |
except Exception as e: | |
features['spectral_centroid'] = 1500.0 | |
features['spectral_centroid_std'] = 100.0 | |
features['spectral_rolloff'] = 3000.0 | |
features['spectral_bandwidth'] = 1000.0 | |
try: | |
pitches, magnitudes = librosa.piptrack(y=y, sr=sr, threshold=0.1, n_fft=n_fft, hop_length=hop_length) | |
pitch_values = [] | |
for t in range(pitches.shape[1]): | |
index = magnitudes[:, t].argmax() | |
pitch = pitches[index, t] | |
if pitch > 0: | |
pitch_values.append(pitch) | |
if pitch_values: | |
features['pitch_mean'] = float(np.mean(pitch_values)) | |
features['pitch_std'] = float(np.std(pitch_values)) | |
features['pitch_range'] = float(np.max(pitch_values) - np.min(pitch_values)) | |
else: | |
features['pitch_mean'] = 150.0 | |
features['pitch_std'] = 20.0 | |
features['pitch_range'] = 50.0 | |
except Exception as e: | |
features['pitch_mean'] = 150.0 | |
features['pitch_std'] = 20.0 | |
features['pitch_range'] = 50.0 | |
try: | |
tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=hop_length) | |
features['tempo'] = float(tempo) | |
except Exception as e: | |
features['tempo'] = 120.0 | |
try: | |
zcr = librosa.feature.zero_crossing_rate(y, hop_length=hop_length) | |
features['zcr_mean'] = float(np.mean(zcr)) | |
features['zcr_std'] = float(np.std(zcr)) | |
except Exception as e: | |
features['zcr_mean'] = 0.1 | |
features['zcr_std'] = 0.05 | |
return features | |
except Exception as e: | |
return None | |
def calculate_accent_scores(self, features): | |
scores = {} | |
for accent, profile in self.accent_profiles.items(): | |
score = 0.0 | |
spectral_centroid = features.get('spectral_centroid', 1500) | |
f2_range = profile['formant_f2_range'] | |
if f2_range[0] <= spectral_centroid <= f2_range[1]: | |
score += 0.3 | |
else: | |
distance = min( | |
abs(spectral_centroid - f2_range[0]), | |
abs(spectral_centroid - f2_range[1]) | |
) | |
score += max(0, 0.3 - (distance / 1000)) | |
pitch_std = features.get('pitch_std', 20) | |
if profile['pitch_variance'] == 'low' and pitch_std < 20: | |
score += 0.2 | |
elif profile['pitch_variance'] == 'medium' and 20 <= pitch_std <= 40: | |
score += 0.2 | |
elif profile['pitch_variance'] == 'high' and pitch_std > 40: | |
score += 0.2 | |
tempo = features.get('tempo', 120) | |
tempo_range = profile['tempo_range'] | |
if tempo_range[0] <= tempo <= tempo_range[1]: | |
score += 0.2 | |
else: | |
distance = min( | |
abs(tempo - tempo_range[0]), | |
abs(tempo - tempo_range[1]) | |
) | |
score += max(0, 0.2 - (distance / 50)) | |
mfcc_score = self._calculate_mfcc_similarity(features.get('mfcc_mean', np.zeros(13)), accent) | |
score += mfcc_score * 0.3 | |
scores[accent] = max(0, min(1, score)) | |
return scores | |
def _calculate_mfcc_similarity(self, mfcc_features, accent): | |
accent_patterns = { | |
'American': [0.2, -0.1, 0.3, -0.2, 0.1, -0.1, 0.2, -0.1, 0.1, -0.1, 0.1, -0.1, 0.1], | |
'British': [0.1, -0.2, 0.2, -0.3, 0.2, -0.1, 0.1, -0.2, 0.1, -0.1, 0.2, -0.1, 0.1], | |
'Australian': [0.3, -0.1, 0.1, -0.2, 0.3, -0.1, 0.2, -0.1, 0.2, -0.1, 0.1, -0.2, 0.1], | |
'Indian': [0.1, -0.3, 0.4, -0.1, 0.2, -0.2, 0.3, -0.1, 0.1, -0.2, 0.2, -0.1, 0.2], | |
'Canadian': [0.2, -0.1, 0.2, -0.2, 0.1, -0.1, 0.1, -0.1, 0.2, -0.1, 0.1, -0.1, 0.1] | |
} | |
if accent not in accent_patterns: | |
return 0 | |
try: | |
pattern = np.array(accent_patterns[accent]) | |
mfcc_array = np.array(mfcc_features) | |
mfcc_norm = np.linalg.norm(mfcc_array) | |
pattern_norm = np.linalg.norm(pattern) | |
if mfcc_norm > 0 and pattern_norm > 0: | |
mfcc_normalized = mfcc_array / mfcc_norm | |
pattern_normalized = pattern / pattern_norm | |
similarity = np.dot(mfcc_normalized, pattern_normalized) | |
return max(0, float(similarity)) | |
else: | |
return 0.5 | |
except Exception as e: | |
return 0.5 | |
def predict_accent(self, audio_path): | |
if not os.path.exists(audio_path): | |
return None | |
features = self.extract_acoustic_features(audio_path) | |
if not features: | |
return None | |
scores = self.calculate_accent_scores(features) | |
total_score = sum(scores.values()) | |
if total_score > 0: | |
normalized_scores = {k: v/total_score for k, v in scores.items()} | |
else: | |
normalized_scores = {k: 1.0/len(scores) for k in scores.keys()} | |
predicted_accent = max(normalized_scores, key=normalized_scores.get) | |
confidence = normalized_scores[predicted_accent] | |
return { | |
'accent': predicted_accent, | |
'confidence': confidence, | |
'all_probabilities': normalized_scores, | |
'raw_scores': scores | |
} | |
def print_detailed_results(self, result): | |
if not result: | |
return | |
print(f"Predicted Accent: {result['accent']}") | |
print(f"Confidence Score: {result['confidence']:.1%}") | |
print("All Accent Probabilities:") | |
sorted_probs = sorted( | |
result['all_probabilities'].items(), | |
key=lambda x: x[1], | |
reverse=True | |
) | |
for i, (accent, prob) in enumerate(sorted_probs): | |
bar_length = int(prob * 40) | |
bar = "█" * bar_length + "░" * (40 - bar_length) | |
print(f"{accent:12}: {prob:.1%} |{bar}|") | |
def main(): | |
if len(sys.argv) != 2: | |
print("Usage: python accent_classifier.py audio_file.mp3") | |
return | |
audio_file = sys.argv[1] | |
classifier = SimpleOfflineAccentClassifier() | |
result = classifier.predict_accent(audio_file) | |
classifier.print_detailed_results(result) | |
if __name__ == "__main__": | |
main() |