import librosa import numpy as np import os import sys class SimpleOfflineAccentClassifier: def __init__(self): self.accent_profiles = { 'American': { 'formant_f1_range': (300, 800), 'formant_f2_range': (1200, 2200), 'pitch_variance': 'medium', 'tempo_range': (140, 180), 'spectral_tilt': 'neutral' }, 'British': { 'formant_f1_range': (280, 750), 'formant_f2_range': (1400, 2400), 'pitch_variance': 'low', 'tempo_range': (120, 160), 'spectral_tilt': 'high' }, 'Australian': { 'formant_f1_range': (320, 850), 'formant_f2_range': (1100, 2000), 'pitch_variance': 'high', 'tempo_range': (130, 170), 'spectral_tilt': 'low' }, 'Indian': { 'formant_f1_range': (350, 900), 'formant_f2_range': (1300, 2300), 'pitch_variance': 'high', 'tempo_range': (160, 200), 'spectral_tilt': 'neutral' }, 'Canadian': { 'formant_f1_range': (290, 780), 'formant_f2_range': (1250, 2150), 'pitch_variance': 'medium', 'tempo_range': (135, 175), 'spectral_tilt': 'neutral' } } def extract_acoustic_features(self, audio_path): try: y, sr = librosa.load(audio_path, sr=22050, duration=30) if len(y) == 0: return None min_length = sr * 2 if len(y) < min_length: repeat_count = int(min_length / len(y)) + 1 y = np.tile(y, repeat_count)[:min_length] features = {} n_fft = min(2048, len(y)) hop_length = n_fft // 4 try: mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, n_fft=n_fft, hop_length=hop_length) features['mfcc_mean'] = np.mean(mfccs, axis=1) features['mfcc_std'] = np.std(mfccs, axis=1) except Exception as e: features['mfcc_mean'] = np.zeros(13) features['mfcc_std'] = np.zeros(13) try: spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr, n_fft=n_fft, hop_length=hop_length) features['spectral_centroid'] = float(np.mean(spectral_centroids)) features['spectral_centroid_std'] = float(np.std(spectral_centroids)) spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr, n_fft=n_fft, hop_length=hop_length) features['spectral_rolloff'] = float(np.mean(spectral_rolloff)) spectral_bandwidth = librosa.feature.spectral_bandwidth(y=y, sr=sr, n_fft=n_fft, hop_length=hop_length) features['spectral_bandwidth'] = float(np.mean(spectral_bandwidth)) except Exception as e: features['spectral_centroid'] = 1500.0 features['spectral_centroid_std'] = 100.0 features['spectral_rolloff'] = 3000.0 features['spectral_bandwidth'] = 1000.0 try: pitches, magnitudes = librosa.piptrack(y=y, sr=sr, threshold=0.1, n_fft=n_fft, hop_length=hop_length) pitch_values = [] for t in range(pitches.shape[1]): index = magnitudes[:, t].argmax() pitch = pitches[index, t] if pitch > 0: pitch_values.append(pitch) if pitch_values: features['pitch_mean'] = float(np.mean(pitch_values)) features['pitch_std'] = float(np.std(pitch_values)) features['pitch_range'] = float(np.max(pitch_values) - np.min(pitch_values)) else: features['pitch_mean'] = 150.0 features['pitch_std'] = 20.0 features['pitch_range'] = 50.0 except Exception as e: features['pitch_mean'] = 150.0 features['pitch_std'] = 20.0 features['pitch_range'] = 50.0 try: tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=hop_length) features['tempo'] = float(tempo) except Exception as e: features['tempo'] = 120.0 try: zcr = librosa.feature.zero_crossing_rate(y, hop_length=hop_length) features['zcr_mean'] = float(np.mean(zcr)) features['zcr_std'] = float(np.std(zcr)) except Exception as e: features['zcr_mean'] = 0.1 features['zcr_std'] = 0.05 return features except Exception as e: return None def calculate_accent_scores(self, features): scores = {} for accent, profile in self.accent_profiles.items(): score = 0.0 spectral_centroid = features.get('spectral_centroid', 1500) f2_range = profile['formant_f2_range'] if f2_range[0] <= spectral_centroid <= f2_range[1]: score += 0.3 else: distance = min( abs(spectral_centroid - f2_range[0]), abs(spectral_centroid - f2_range[1]) ) score += max(0, 0.3 - (distance / 1000)) pitch_std = features.get('pitch_std', 20) if profile['pitch_variance'] == 'low' and pitch_std < 20: score += 0.2 elif profile['pitch_variance'] == 'medium' and 20 <= pitch_std <= 40: score += 0.2 elif profile['pitch_variance'] == 'high' and pitch_std > 40: score += 0.2 tempo = features.get('tempo', 120) tempo_range = profile['tempo_range'] if tempo_range[0] <= tempo <= tempo_range[1]: score += 0.2 else: distance = min( abs(tempo - tempo_range[0]), abs(tempo - tempo_range[1]) ) score += max(0, 0.2 - (distance / 50)) mfcc_score = self._calculate_mfcc_similarity(features.get('mfcc_mean', np.zeros(13)), accent) score += mfcc_score * 0.3 scores[accent] = max(0, min(1, score)) return scores def _calculate_mfcc_similarity(self, mfcc_features, accent): accent_patterns = { 'American': [0.2, -0.1, 0.3, -0.2, 0.1, -0.1, 0.2, -0.1, 0.1, -0.1, 0.1, -0.1, 0.1], 'British': [0.1, -0.2, 0.2, -0.3, 0.2, -0.1, 0.1, -0.2, 0.1, -0.1, 0.2, -0.1, 0.1], 'Australian': [0.3, -0.1, 0.1, -0.2, 0.3, -0.1, 0.2, -0.1, 0.2, -0.1, 0.1, -0.2, 0.1], 'Indian': [0.1, -0.3, 0.4, -0.1, 0.2, -0.2, 0.3, -0.1, 0.1, -0.2, 0.2, -0.1, 0.2], 'Canadian': [0.2, -0.1, 0.2, -0.2, 0.1, -0.1, 0.1, -0.1, 0.2, -0.1, 0.1, -0.1, 0.1] } if accent not in accent_patterns: return 0 try: pattern = np.array(accent_patterns[accent]) mfcc_array = np.array(mfcc_features) mfcc_norm = np.linalg.norm(mfcc_array) pattern_norm = np.linalg.norm(pattern) if mfcc_norm > 0 and pattern_norm > 0: mfcc_normalized = mfcc_array / mfcc_norm pattern_normalized = pattern / pattern_norm similarity = np.dot(mfcc_normalized, pattern_normalized) return max(0, float(similarity)) else: return 0.5 except Exception as e: return 0.5 def predict_accent(self, audio_path): if not os.path.exists(audio_path): return None features = self.extract_acoustic_features(audio_path) if not features: return None scores = self.calculate_accent_scores(features) total_score = sum(scores.values()) if total_score > 0: normalized_scores = {k: v/total_score for k, v in scores.items()} else: normalized_scores = {k: 1.0/len(scores) for k in scores.keys()} predicted_accent = max(normalized_scores, key=normalized_scores.get) confidence = normalized_scores[predicted_accent] return { 'accent': predicted_accent, 'confidence': confidence, 'all_probabilities': normalized_scores, 'raw_scores': scores } def print_detailed_results(self, result): if not result: return print(f"Predicted Accent: {result['accent']}") print(f"Confidence Score: {result['confidence']:.1%}") print("All Accent Probabilities:") sorted_probs = sorted( result['all_probabilities'].items(), key=lambda x: x[1], reverse=True ) for i, (accent, prob) in enumerate(sorted_probs): bar_length = int(prob * 40) bar = "█" * bar_length + "░" * (40 - bar_length) print(f"{accent:12}: {prob:.1%} |{bar}|") def main(): if len(sys.argv) != 2: print("Usage: python accent_classifier.py audio_file.mp3") return audio_file = sys.argv[1] classifier = SimpleOfflineAccentClassifier() result = classifier.predict_accent(audio_file) classifier.print_detailed_results(result) if __name__ == "__main__": main()