Spaces:
Running
Running
File size: 6,286 Bytes
99589b3 598f5cb 99589b3 598f5cb 99589b3 4b32ba4 99589b3 4b32ba4 598f5cb 99589b3 598f5cb 99589b3 598f5cb 99589b3 7b2dcfa 99589b3 7b2dcfa 99589b3 598f5cb 99589b3 598f5cb 99589b3 598f5cb 99589b3 b363844 99589b3 598f5cb 99589b3 b363844 99589b3 b363844 f93f34a 99589b3 b363844 99589b3 b363844 99589b3 b363844 598f5cb 99589b3 b363844 598f5cb 99589b3 598f5cb 99589b3 598f5cb 99589b3 b363844 99589b3 598f5cb b363844 99589b3 b363844 99589b3 b363844 99589b3 598f5cb 99589b3 598f5cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# app/ingest.py
from __future__ import annotations
import json
from pathlib import Path
from typing import Dict, List, Any
import yaml
import numpy as np
from sentence_transformers import SentenceTransformer
from app.paths import DOCSTORE_DIR, INDEX_DIR
from .normalize import normalize # β central normalizer
# -------------------- Config --------------------
def load_config(cfg_path: str) -> Dict:
with open(cfg_path, "r", encoding="utf-8") as f:
return yaml.safe_load(f)
# -------------------- Grants.gov collector --------------------
def _collect_from_grantsgov_api(src: Dict) -> List[Dict[str, Any]]:
"""
Calls the Grants.gov Search2 client and returns a list of RAW dicts
(adapter may already be close to unified; we'll still run normalize()).
"""
from app.sources.grantsgov_api import search_grants # local import to avoid cycles
api = src.get("api", {})
page_size = int(api.get("page_size", src.get("page_size", 100)))
max_pages = int(api.get("max_pages", src.get("max_pages", 5)))
payload = api.get("payload", src.get("payload", {}))
url = src.get("url", "")
out = search_grants(url, payload, page_size=page_size, max_pages=max_pages)
hits = out.get("hits", []) if isinstance(out, dict) else (out or [])
return [h for h in hits if isinstance(h, dict)]
# -------------------- Write docstore & build index --------------------
def _save_docstore(recs: List[Dict[str, Any]]) -> str:
DOCSTORE_DIR.mkdir(parents=True, exist_ok=True)
path = DOCSTORE_DIR / "docstore.jsonl"
with path.open("w", encoding="utf-8") as f:
for r in recs:
f.write(json.dumps(r, ensure_ascii=False) + "\n")
return str(path)
def _build_index_from_docstore() -> int:
ds_path = DOCSTORE_DIR / "docstore.jsonl"
if not ds_path.exists():
raise RuntimeError("Docstore not found. Run ingest first.")
# Load records β texts + metas
texts: List[str] = []
metas: List[Dict[str, Any]] = []
with ds_path.open("r", encoding="utf-8") as f:
for line in f:
rec = json.loads(line)
title = rec.get("title") or ""
synopsis = rec.get("synopsis") or rec.get("summary") or ""
agency = rec.get("agency") or ""
eligibility = rec.get("eligibility") or ""
txt = "\n".join([title, synopsis, agency, eligibility]).strip()
if not txt:
continue
texts.append(txt)
metas.append({
"id": rec.get("id"),
"title": title,
"url": rec.get("url"),
"source": rec.get("source"),
"geo": rec.get("geo"),
"categories": rec.get("categories"),
"agency": agency,
"deadline": rec.get("deadline"),
"program_number": rec.get("program_number"),
"posted_date": rec.get("posted_date"),
})
print(f"[index] Rows loaded from docstore: {len(texts)}")
if not texts:
# Write an empty index file so downstream UI can still boot gracefully
(INDEX_DIR).mkdir(parents=True, exist_ok=True)
(INDEX_DIR / "meta.json").write_text(json.dumps([], ensure_ascii=False))
print("[index] No texts to embed. Wrote empty meta.json.")
return 0
# Embed (CPU default; keeps it portable)
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
model.max_seq_length = 256
batch = max(8, min(32, len(texts))) # sensible batch size for small corpora
emb = model.encode(
texts,
convert_to_numpy=True,
normalize_embeddings=True,
show_progress_bar=True,
batch_size=batch,
).astype(np.float32, copy=False)
# FAISS index (Inner Product for cosine on normalized vectors)
import faiss
dim = emb.shape[1]
index = faiss.IndexFlatIP(dim)
index.add(emb)
INDEX_DIR.mkdir(parents=True, exist_ok=True)
faiss.write_index(index, str(INDEX_DIR / "faiss.index"))
(INDEX_DIR / "meta.json").write_text(json.dumps(metas, ensure_ascii=False))
print(f"[index] Wrote FAISS index with {emb.shape[0]} vectors (dim={dim}).")
return len(texts)
# -------------------- Ingest main --------------------
def ingest(cfg_path: str = "config/sources.yaml", env: Dict | None = None):
"""
Reads config, fetches from enabled sources, normalizes with a single map,
attaches categories/geo consistently, DEDUPEs, and builds the index.
"""
cfg = load_config(cfg_path)
all_rows: List[Dict[str, Any]] = []
for entry in cfg.get("sources", []):
if not entry.get("enabled"):
continue
name = entry.get("name", "<source>")
geo = entry.get("geo") or "US"
cats = entry.get("categories") or []
static = {"geo": geo, "categories": cats}
typ = entry.get("type")
rows: List[Dict[str, Any]] = []
if typ == "grantsgov_api":
raw_hits = _collect_from_grantsgov_api(entry)
rows = [normalize("grants_gov", h, static) for h in raw_hits]
elif typ == "local_sample":
p = Path(entry["path"]).expanduser()
blob = json.loads(p.read_text(encoding="utf-8"))
items = blob.get("opportunities") or []
rows = [normalize("local_sample", op, static) for op in items]
else:
# Future adapters (doj_ojp, state_md, web_page, json_static, β¦)
rows = []
print(f"[collect] {name} β {len(rows)} rows")
all_rows.extend(rows)
# ---- DEDUPE (id β url β title) ----
seen, unique = set(), []
for r in all_rows:
key = r.get("id") or r.get("url") or r.get("title")
if not key or key in seen:
continue
seen.add(key)
unique.append(r)
print(f"[ingest] Unique records to index: {len(unique)}")
path = _save_docstore(unique)
n = _build_index_from_docstore()
return path, n
if __name__ == "__main__":
import argparse
ap = argparse.ArgumentParser()
ap.add_argument("--config", default="config/sources.yaml")
args = ap.parse_args()
p, n = ingest(args.config)
print(f"Ingested {n} records. Docstore at {p}")
|