File size: 6,150 Bytes
1dd4254
 
 
 
 
 
 
 
14fc1e9
1dd4254
14fc1e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e39abd
14fc1e9
1dd4254
14fc1e9
 
 
1dd4254
14fc1e9
1dd4254
4e39abd
14fc1e9
1dd4254
 
 
 
 
 
 
14fc1e9
 
 
 
 
 
 
 
 
1dd4254
 
 
 
 
 
4e39abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd4254
 
 
4e39abd
 
1dd4254
 
4e39abd
 
 
 
 
 
 
1dd4254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14fc1e9
1dd4254
 
 
14fc1e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e39abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd4254
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr

from transformers import AutoModel

import torch
import numpy as np
from PIL import Image

MAX_IMAGES = 4


def generate_small(color_indexed: bool, color_num: int) -> list:
    """Generates a small sprite.



    Parameters

    ----------

    color_indexed : bool

        Whether to use color indexing.

    color_num : int

        Number of colors in the palette.



    Returns

    -------

    list

        List of PIL images.

    """
    # Get the latent dimension
    latent_dim = model_small.model.latent_dim
    # Initialize the list of images
    images_list = []
    # Generate MAX_IMAGES images
    for _ in range(MAX_IMAGES):
        # Generate a random latent vector
        latents = torch.randn((1, latent_dim))
        # Generate the image
        with torch.no_grad():
            generated_image = model_small(latents)
        # Clamp the image to [0, 1]
        generated_image = generated_image.clamp_(0.0, 1.0).cpu().numpy()

        # Convert the generated image to PIL image
        color_image = Image.fromarray(
            np.uint8(generated_image[0] * 255).transpose(1, 2, 0), "RGB"
        )

        # Convert to color indexed image if needed
        if color_indexed:
            # Convert using adaptive palette of given color depth
            color_image_indexed = color_image.convert(
                "P", palette=Image.ADAPTIVE, colors=color_num
            )
            # Add the color indexed image to the list
            images_list.append(color_image_indexed)

        # Add the image to the list
        images_list.append(color_image)

    return images_list


def generate_med(color_indexed: bool, color_num: int) -> list:
    """Generates a medium sprite.



    Parameters

    ----------

    color_indexed : bool

        Whether to use color indexing.

    color_num : int

        Number of colors in the palette.



    Returns

    -------

    list

        List of PIL images.

    """
    # Get the latent dimension
    latent_dim = model_med.model.latent_dim
    # Initialize the list of images
    images_list = []
    # Generate MAX_IMAGES images
    for _ in range(MAX_IMAGES):
        # Generate a random latent vector
        latents = torch.randn((1, latent_dim))
        # Generate the image
        with torch.no_grad():
            generated_image = model_med(latents)
        # Clamp the image to [0, 1]
        generated_image = generated_image.clamp_(0.0, 1.0).cpu().numpy()

        # Convert the generated image to PIL image
        color_image = Image.fromarray(
            np.uint8(generated_image[0] * 255).transpose(1, 2, 0), "RGBA"
        )

        # Convert to color indexed image if needed
        if color_indexed:
            # Convert using adaptive palette of given color depth
            color_image_indexed = color_image.convert(
                "P", palette=Image.ADAPTIVE, colors=color_num
            )
            # Add the color indexed image to the list
            images_list.append(color_image_indexed)

        # Add the image to the list
        images_list.append(color_image)

    return images_list


# Create the demo interface
demo = gr.Blocks()

# Create the small model
model_small = AutoModel.from_pretrained(
    "michaelriedl/MonsterForge-small", trust_remote_code=True
)
model_small.eval()

# Create the medium model
model_med = AutoModel.from_pretrained(
    "michaelriedl/MonsterForge-medium", trust_remote_code=True
)
model_med.eval()

# Create the interface
with demo:
    gr.HTML(
        """

        <div style="text-align: center; margin: 0 auto;">

            <p style="margin-bottom: 14px; line-height: 23px;">

                Gradio demo for MonsterForge models. This was built with Lightweight GAN using the implementation from <a href='https://github.com/lucidrains/lightweight-gan' target='_blank'>lucidrains</a>.

            </p>

        </div>

        """
    )
    with gr.Tabs():
        with gr.TabItem("Small Sprite"):
            with gr.Column():
                with gr.Row():
                    gallery_small = gr.Gallery(
                        columns=4,
                        object_fit="scale-down",
                    )
                with gr.Row():
                    color_index_small = gr.Checkbox(label="Color indexed", value=False)
                    color_num_small = gr.Slider(
                        minimum=8,
                        maximum=32,
                        value=32,
                        step=4,
                        label="Number of colors in the palette",
                    )
                gen_btn_small = gr.Button("Generate")
                gen_btn_small.click(
                    fn=generate_small,
                    inputs=[color_index_small, color_num_small],
                    outputs=gallery_small,
                )
        with gr.TabItem("Medium Sprite"):
            with gr.Column():
                with gr.Row():
                    gallery_med = gr.Gallery(
                        columns=4,
                        object_fit="scale-down",
                    )
                with gr.Row():
                    color_index_med = gr.Checkbox(label="Color indexed", value=False)
                    color_num_med = gr.Slider(
                        minimum=8,
                        maximum=32,
                        value=32,
                        step=4,
                        label="Number of colors in the palette",
                    )
                gen_btn_med = gr.Button("Generate")
                gen_btn_med.click(
                    fn=generate_med,
                    inputs=[color_index_med, color_num_med],
                    outputs=gallery_med,
                )
    gr.HTML(
        """

        <div class="footer">

            <div style='text-align: center;'>MonsterForge by <a href='https://michaelriedl.com/' target='_blank'>Michael Riedl</a></div>

        </div>

        """
    )

# Launch the interface
demo.launch()