Spaces:
Running
Running
File size: 22,452 Bytes
57d366e 373c3ad cd7ef38 a1ff36a 65e7b5a b0e26ec 373c3ad cd7ef38 b0e26ec 373c3ad b0e26ec 373c3ad cd7ef38 373c3ad 57d366e 373c3ad cd7ef38 65e7b5a 373c3ad cd7ef38 65e7b5a cd7ef38 65e7b5a cd7ef38 373c3ad ffaf2b4 57d366e 4b15114 9c9a516 4b15114 9c9a516 cd7ef38 9c9a516 4b15114 57d366e 9c9a516 ffaf2b4 4b15114 373c3ad cd7ef38 373c3ad cd7ef38 373c3ad cd7ef38 373c3ad cd7ef38 373c3ad 9c9a516 373c3ad cd7ef38 373c3ad cd7ef38 373c3ad cd7ef38 373c3ad cd7ef38 373c3ad cd7ef38 373c3ad 4b15114 65e7b5a 4b15114 65e7b5a cd7ef38 4b15114 cd7ef38 65e7b5a cd7ef38 65e7b5a cd7ef38 c1d5432 65e7b5a c1d5432 cd7ef38 4b15114 65e7b5a 4b15114 373c3ad 4b15114 65e7b5a 4b15114 373c3ad 4b15114 373c3ad 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 373c3ad 4b15114 65e7b5a 373c3ad 65e7b5a ffaf2b4 4b15114 cd7ef38 65e7b5a 4b15114 65e7b5a 4b15114 cd7ef38 9c9a516 4b15114 65e7b5a 4b15114 9c9a516 65e7b5a cd7ef38 373c3ad 65e7b5a 373c3ad cd7ef38 65e7b5a 373c3ad 65e7b5a 373c3ad 65e7b5a 4b15114 65e7b5a cd7ef38 4b15114 65e7b5a 4b15114 cd7ef38 4b15114 373c3ad cd7ef38 65e7b5a 4b15114 65e7b5a 4b15114 cd7ef38 65e7b5a 4b15114 cd7ef38 65e7b5a cd7ef38 65e7b5a cd7ef38 65e7b5a cd7ef38 65e7b5a cd7ef38 65e7b5a 4b15114 cd7ef38 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 4b15114 65e7b5a 373c3ad cd7ef38 ffaf2b4 2657d2b 4b15114 2657d2b 57d366e 9c9a516 373c3ad 4b15114 373c3ad 4b15114 cd7ef38 ffaf2b4 373c3ad 4b15114 9c9a516 4b15114 9c9a516 cd7ef38 9c9a516 4b15114 57d366e 373c3ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import re
from tokenizers import normalizers # For isinstance check
from tokenizers.normalizers import Sequence, Replace, Strip
from tokenizers import Regex
import os
# --- Model & Tokenizer Configuration ---
model1_path = "https://huggingface.co/spaces/SzegedAI/AI_Detector/resolve/main/modernbert.bin"
model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
try:
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_1.load_state_dict(torch.hub.load_state_dict_from_url(model1_path, map_location=device, progress=True))
model_1.to(device).eval()
model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_2.load_state_dict(torch.hub.load_state_dict_from_url(model2_path, map_location=device, progress=True))
model_2.to(device).eval()
model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device, progress=True))
model_3.to(device).eval()
except Exception as e:
print(f"Error during model loading: {e}")
tokenizer = None
model_1, model_2, model_3 = None, None, None
label_mapping = {
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
39: 'text-davinci-002', 40: 'text-davinci-003'
}
def clean_text(text: str) -> str:
text = re.sub(r'\s{2,}', ' ', text)
text = re.sub(r'\s+([,.;:?!])', r'\1', text)
return text
if tokenizer:
custom_normalizers_to_add = [
Replace(Regex(r'(\w+)[--]\s*\n\s*(\w+)'), r"\1\2"),
Replace(Regex(r'\s*\n\s*'), " "),
Strip()
]
current_backend_normalizer = tokenizer.backend_tokenizer.normalizer
if current_backend_normalizer is None:
tokenizer.backend_tokenizer.normalizer = Sequence(custom_normalizers_to_add)
elif isinstance(current_backend_normalizer, normalizers.Sequence):
# Extend the existing list of normalizers within the Sequence object
current_backend_normalizer.normalizers.extend(custom_normalizers_to_add)
# Re-assign if `extend` doesn't modify in place or if Sequence needs explicit update
# For `tokenizers.normalizers.Sequence`, `normalizers` is a list and `extend` modifies it in place.
# No explicit re-assignment of tokenizer.backend_tokenizer.normalizer needed here unless Sequence is immutable.
# To be safe, one might re-create:
# tokenizer.backend_tokenizer.normalizer = Sequence(current_backend_normalizer.normalizers)
else: # It's a single normalizer object, not a Sequence
tokenizer.backend_tokenizer.normalizer = Sequence([current_backend_normalizer] + custom_normalizers_to_add)
# --- End Model & Tokenizer Configuration ---
title_md = """
<h1 style="text-align: center; margin-bottom: 5px;">AI Text Detector</h1>
<p style="text-align: center; font-size: 0.9em; color: var(--text-secondary); margin-top: 0; margin-bottom: 20px;">Developed by SzegedAI</p>
"""
description = """
<div class="app-description">
<p>This tool utilizes the <b>ModernBERT</b> model to decide whether a given text is human-authored or AI-generated. It employs a soft voting ensemble of <b>three</b> models to improve detection accuracy.</p>
<ul class="features-list">
<li><span class="icon">✅</span> <strong>Human Verification: </strong> Clearly identifies human-written content.</li>
<li><span class="icon">🔍</span> <strong>Model Detection: </strong> Capable of identifying content from over 40 AI models.</li>
<li><span class="icon">📈</span> <strong>Accuracy: </strong> Performs optimally with more extensive text inputs.</li>
<li><span class="icon">📄</span> <strong>Read more: </strong> Our methodology is detailed in our research paper:
<a href="https://aclanthology.org/2025.genaidetect-1.15/" target="_blank" class="learn-more-link"> <b> LINK </b></a>.
</li>
</ul>
<p class="instruction-text">Paste your text into the field below to analyze its origin.</p>
</div>
"""
bottom_text = "<p class='footer-text'>SzegedAI - Mihaly Kiss</p>"
AI_texts = [
"Camels are remarkable desert animals known for their unique adaptations to harsh, arid environments. Native to the Middle East, North Africa, and parts of Asia, camels have been essential to human life for centuries, serving as a mode of transportation, a source of food, and even a symbol of endurance and survival. There are two primary species of camels: the dromedary camel, which has a single hump and is commonly found in the Middle East and North Africa, and the Bactrian camel, which has two humps and is native to Central Asia. Their humps store fat, not water, as commonly believed, allowing them to survive long periods without food by metabolizing the stored fat for energy. Camels are highly adapted to desert life. They can go for weeks without water, and when they do drink, they can consume up to 40 gallons in one sitting. Their thick eyelashes, sealable nostrils, and wide, padded feet protect them from sand and help them walk easily on loose desert terrain.",
]
Human_texts = [
"To make BERT handle a variety of down-stream tasks, our input representation is able to unambiguously represent both a single sentence and a pair of sentences (e.g., h Question, Answeri) in one token sequence. Throughout this work, a “sentence” can be an arbitrary span of contiguous text, rather than an actual linguistic sentence. A “sequence” refers to the input token sequence to BERT, which may be a single sentence or two sentences packed together. We use WordPiece embeddings (Wu et al., 2016) with a 30,000 token vocabulary. The first token of every sequence is always a special classification token ([CLS]). The final hidden state corresponding to this token is used as the aggregate sequence representation for classification tasks. Sentence pairs are packed together into a single sequence."
]
def classify_text_interface(text):
if not all([tokenizer, model_1, model_2, model_3]):
return "<p style='text-align: center; color: var(--ai-color);'><strong>Error: Models not loaded. Please check the console.</strong></p>"
cleaned_text = clean_text(text)
if not cleaned_text.strip():
result_message = "<p style='text-align: center; color: var(--text-secondary);'>Please enter some text to analyze.</p>"
return result_message
inputs = tokenizer(cleaned_text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
with torch.no_grad():
logits_1 = model_1(**inputs).logits
logits_2 = model_2(**inputs).logits
logits_3 = model_3(**inputs).logits
softmax_1 = torch.softmax(logits_1, dim=1)
softmax_2 = torch.softmax(logits_2, dim=1)
softmax_3 = torch.softmax(logits_3, dim=1)
averaged_probabilities = (softmax_1 + softmax_2 + softmax_3) / 3
probabilities = averaged_probabilities[0]
ai_probs = probabilities.clone()
human_label_index = -1
for k, v in label_mapping.items():
if v.lower() == 'human':
human_label_index = k
break
if human_label_index != -1:
ai_probs[human_label_index] = 0
human_prob_value = probabilities[human_label_index].item() * 100
else:
human_prob_value = 0
print("Warning: 'human' label not found in label_mapping.")
ai_total_prob = ai_probs.sum().item() * 100
ai_argmax_index = torch.argmax(ai_probs).item()
ai_argmax_model = label_mapping.get(ai_argmax_index, "Unknown AI")
if human_prob_value > ai_total_prob :
result_message = (
f"<p><strong>The text is</strong> <span class='highlight-human'><strong>{human_prob_value:.2f}%</strong> likely <b>Human written</b>.</span></p>"
)
else:
result_message = (
f"<p><strong>The text is</strong> <span class='highlight-ai'><strong>{ai_total_prob:.2f}%</strong> likely <b>AI generated</b>.</span></p>"
f"<p style='margin-top: 10px; font-size: 0.95em;'><strong>Most Likely AI Source:</strong> {ai_argmax_model} (with {probabilities[ai_argmax_index].item()*100:.2f}% confidence among AI models)</p>"
)
return result_message
modern_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
/* Define values for light and dark themes */
:root {
--primary-bg-light: #F4F7FC;
--app-bg-light: #FFFFFF;
--text-primary-light: #2C3E50;
--text-secondary-light: #7F8C8D;
--accent-color-light: #1ABC9C;
--accent-color-darker-light: #16A085;
--border-color-light: #E0E6ED;
--input-bg-light: #FFFFFF;
--human-color-light: #2ECC71;
--human-bg-light: rgba(46, 204, 113, 0.1);
--ai-color-light: #E74C3C;
--ai-bg-light: rgba(231, 76, 60, 0.1);
--shadow-color-light: rgba(44, 62, 80, 0.1);
--examples-bg-light: #F8F9FA;
--placeholder-color-light: #B0BEC5;
--accordion-label-color-light: var(--text-primary-light);
--accordion-bg-light: var(--app-bg-light);
--accordion-border-light: var(--border-color-light);
--sample-textbox-bg-light: var(--input-bg-light);
--primary-bg-dark: #121828; /* Even darker body for more contrast */
--app-bg-dark: #1B2134; /* Darker app container */
--text-primary-dark: #E0E7FF; /* Lighter text for dark mode */
--text-secondary-dark: #98A0B3; /* Softer secondary text */
--accent-color-dark: #2CE1C7; /* Brighter accent */
--accent-color-darker-dark: #15B8A5;
--border-color-dark: #2F364D; /* Subtle borders */
--input-bg-dark: #22283E; /* Dark input fields */
--human-color-dark: #50FA7B; /* Brighter lime green */
--human-bg-dark: rgba(80, 250, 123, 0.15);
--ai-color-dark: #FF79C6; /* Bright pink/magenta for AI */
--ai-bg-dark: rgba(255, 121, 198, 0.15);
--shadow-color-dark: rgba(0, 0, 0, 0.3); /* Shadow for dark mode */
--examples-bg-dark: #22283E; /* Examples bg same as input */
--placeholder-color-dark: #687083;
--accordion-label-color-dark: var(--text-primary-dark);
--accordion-bg-dark: var(--app-bg-dark);
--accordion-border-dark: var(--border-color-dark);
--sample-textbox-bg-dark: var(--input-bg-dark);
/* Default to light theme variables */
--primary-bg: var(--primary-bg-light);
--app-bg: var(--app-bg-light);
--text-primary: var(--text-primary-light);
--text-secondary: var(--text-secondary-light);
--accent-color: var(--accent-color-light);
--accent-color-darker: var(--accent-color-darker-light);
--border-color: var(--border-color-light);
--input-bg: var(--input-bg-light);
--input-focus-border: var(--accent-color-light); /* Default focus for light */
--human-color: var(--human-color-light);
--human-bg: var(--human-bg-light);
--ai-color: var(--ai-color-light);
--ai-bg: var(--ai-bg-light);
--shadow-color: var(--shadow-color-light);
--examples-bg: var(--examples-bg-light);
--placeholder-color: var(--placeholder-color-light);
--accordion-label-color: var(--accordion-label-color-light);
--accordion-bg: var(--accordion-bg-light);
--accordion-border: var(--accordion-border-light);
--sample-textbox-bg: var(--sample-textbox-bg-light);
--container-max-width: 800px;
--border-radius-md: 8px;
--border-radius-lg: 12px;
}
/* Apply Dark Theme when html.dark class is present (Hugging Face Spaces) */
html.dark {
--primary-bg: var(--primary-bg-dark);
--app-bg: var(--app-bg-dark);
--text-primary: var(--text-primary-dark);
--text-secondary: var(--text-secondary-dark);
--accent-color: var(--accent-color-dark);
--accent-color-darker: var(--accent-color-darker-dark);
--border-color: var(--border-color-dark);
--input-bg: var(--input-bg-dark);
--input-focus-border: var(--accent-color-dark); /* Focus for dark */
--human-color: var(--human-color-dark);
--human-bg: var(--human-bg-dark);
--ai-color: var(--ai-color-dark);
--ai-bg: var(--ai-bg-dark);
--shadow-color: var(--shadow-color-dark);
--examples-bg: var(--examples-bg-dark);
--placeholder-color: var(--placeholder-color-dark);
--accordion-label-color: var(--accordion-label-color-dark);
--accordion-bg: var(--accordion-bg-dark);
--accordion-border: var(--accordion-border-dark);
--sample-textbox-bg: var(--sample-textbox-bg-dark);
}
/* Fallback for system preference if html.dark is not set */
@media (prefers-color-scheme: dark) {
html:not(.dark) :root { /* Apply only if HF class is not already active */
--primary-bg: var(--primary-bg-dark);
--app-bg: var(--app-bg-dark);
--text-primary: var(--text-primary-dark);
--text-secondary: var(--text-secondary-dark);
--accent-color: var(--accent-color-dark);
--accent-color-darker: var(--accent-color-darker-dark);
--border-color: var(--border-color-dark);
--input-bg: var(--input-bg-dark);
--input-focus-border: var(--accent-color-dark);
--human-color: var(--human-color-dark);
--human-bg: var(--human-bg-dark);
--ai-color: var(--ai-color-dark);
--ai-bg: var(--ai-bg-dark);
--shadow-color: var(--shadow-color-dark);
--examples-bg: var(--examples-bg-dark);
--placeholder-color: var(--placeholder-color-dark);
--accordion-label-color: var(--accordion-label-color-dark);
--accordion-bg: var(--accordion-bg-dark);
--accordion-border: var(--accordion-border-dark);
--sample-textbox-bg: var(--sample-textbox-bg-dark);
}
}
.features-list strong::after {
content: " ";
display: inline-block;
width: 0.2em;
}
body {
font-family: 'Inter', sans-serif;
background: var(--primary-bg);
color: var(--text-primary);
margin: 0;
padding: 20px;
display: flex;
justify-content: center;
align-items: flex-start;
min-height: 100vh;
box-sizing: border-box;
overflow-y: auto;
transition: background-color 0.2s ease-out, color 0.2s ease-out;
}
.gradio-container {
background-color: var(--app-bg);
border-radius: var(--border-radius-lg);
padding: clamp(25px, 5vw, 40px);
box-shadow: 0 8px 25px var(--shadow-color);
max-width: var(--container-max-width);
width: 100%;
margin: 20px auto;
border: 1px solid var(--border-color); /* Add subtle border consistent with theme */
transition: background-color 0.2s ease-out, box-shadow 0.2s ease-out, border-color 0.2s ease-out;
}
/* Reset Gradio default styles that might interfere */
.form.svelte-633qhp, .block.svelte-11xb1hd, .gradio-html .block, .gradio-markdown > *:first-child {
background: none !important;
border: none !important;
box-shadow: none !important;
padding: 0 !important; /* Reset padding if it causes issues */
margin: 0 !important; /* Reset margin for Markdown wrapper */
}
/* Ensure Markdown text color inherits correctly */
.gradio-markdown p, .gradio-markdown ul, .gradio-markdown li, .gradio-markdown h1, .gradio-markdown h2 {
color: inherit !important;
}
.gradio-markdown a {
color: var(--accent-color) !important;
}
.gradio-markdown a:hover {
color: var(--accent-color-darker) !important;
}
.app-description p {
color: var(--text-secondary);
font-size: clamp(14px, 2.5vw, 16px);
line-height: 1.7;
margin-bottom: 15px !important; /* Override Gradio's specific p margin */
}
.app-description .instruction-text {
font-weight: 500;
color: var(--text-primary);
margin-top: 20px !important;
text-align: center;
}
.features-list {
list-style: none;
padding-left: 0;
margin: 20px 0 !important;
}
.features-list li {
display: flex;
align-items: center;
font-size: clamp(14px, 2.5vw, 16px);
color: var(--text-secondary);
margin-bottom: 12px !important;
line-height: 1.6;
}
.features-list .icon {
margin-right: 12px;
font-size: 1.2em;
color: var(--accent-color);
flex-shrink: 0;
}
#text_input_box textarea {
background-color: var(--input-bg);
border: 1px solid var(--border-color);
border-radius: var(--border-radius-md);
font-size: clamp(15px, 2.5vw, 16px);
padding: 15px;
width: 100%;
box-sizing: border-box;
color: var(--text-primary);
transition: background-color 0.2s ease-out, border-color 0.2s ease-out, box-shadow 0.2s ease-out, color 0.2s ease-out;
min-height: 120px;
box-shadow: 0 1px 3px rgba(0,0,0,0.03); /* Softer shadow */
}
#text_input_box textarea::placeholder {
color: var(--placeholder-color);
transition: color 0.2s ease-out;
}
#text_input_box textarea:focus {
border-color: var(--input-focus-border);
box-shadow: 0 0 0 3px color-mix(in srgb, var(--input-focus-border) 20%, transparent);
outline: none;
}
#result_output_box {
background-color: var(--input-bg);
border: 1px solid var(--border-color);
border-radius: var(--border-radius-md);
padding: 20px;
margin-top: 25px !important; /* Override Gradio */
width: 100%;
box-sizing: border-box;
text-align: center;
font-size: clamp(16px, 3vw, 17px);
box-shadow: 0 1px 3px rgba(0,0,0,0.03);
min-height: 80px;
display: flex;
flex-direction: column;
justify-content: center;
transition: background-color 0.2s ease-out, border-color 0.2s ease-out, color 0.2s ease-out;
}
#result_output_box p {
margin-bottom: 8px !important;
line-height: 1.6;
color: var(--text-primary) !important;
}
#result_output_box p:last-child {
margin-bottom: 0 !important;
}
#result_output_box strong {
color: var(--text-primary) !important;
}
.highlight-human, .highlight-ai {
font-weight: 600;
padding: 5px 10px;
border-radius: var(--border-radius-md);
display: inline-block;
font-size: 1.05em;
transition: background-color 0.2s ease-out, color 0.2s ease-out;
}
.highlight-human { color: var(--human-color); background-color: var(--human-bg); }
.highlight-ai { color: var(--ai-color); background-color: var(--ai-bg); }
.gr-accordion {
border: 1px solid var(--accordion-border) !important;
border-radius: var(--border-radius-lg) !important;
box-shadow: none !important;
padding: 0 15px 15px 15px !important;
margin-bottom: 20px !important;
background-color: var(--accordion-bg) !important;
transition: background-color 0.2s ease-out, border-color 0.2s ease-out;
}
.gr-accordion > .label-wrap button {
font-weight: 600 !important;
color: var(--accordion-label-color) !important;
padding: 15px 0px !important;
font-size: 1.05em !important;
transition: color 0.2s ease-out;
}
.gr-accordion > .label-wrap { border-bottom: none !important; }
.gr-examples {
padding: 15px 0px 0px 0px !important;
border: none !important;
border-radius: 0 !important;
background-color: transparent !important;
margin-top: 0px !important;
}
.gr-sample-textbox {
border: 1px solid var(--border-color) !important;
border-radius: var(--border-radius-md) !important;
font-size: 14px !important;
background-color: var(--sample-textbox-bg) !important;
color: var(--text-primary) !important;
transition: background-color 0.2s ease-out, border-color 0.2s ease-out, color 0.2s ease-out;
}
.gr-sample-textbox:hover { border-color: var(--accent-color) !important; }
.footer-text, #bottom_text {
text-align: center;
margin-top: 40px !important;
font-size: clamp(13px, 2vw, 14px);
color: var(--text-secondary);
}
#bottom_text p { margin: 0 !important; }
@media (max-width: 768px) {
body { padding: 10px; align-items: flex-start; }
.gradio-container { padding: 20px; margin: 10px; }
/* h1 { font-size: 22px; } Handled by Markdown inline style which uses clamp */
.app-description p, .features-list li { font-size: 14px; }
#text_input_box textarea { font-size: 15px; min-height: 100px; }
#result_output_box { font-size: 15px; padding: 15px; }
.gr-accordion > .label-wrap button { padding: 12px 0 !important; }
}
"""
iface = gr.Blocks(css=modern_css, theme=gr.themes.Base(font=[gr.themes.GoogleFont("Inter"), "sans-serif"]))
with iface:
gr.Markdown(title_md)
gr.Markdown(description)
text_input = gr.Textbox(
label="",
placeholder="Type or paste your content here...",
elem_id="text_input_box",
lines=10
)
result_output = gr.HTML(elem_id="result_output_box")
if all([tokenizer, model_1, model_2, model_3]):
text_input.change(classify_text_interface, inputs=text_input, outputs=result_output)
else:
gr.HTML("<div id='result_output_box'><p style='color: var(--ai-color); text-align: center;'><strong>Application Error: Models could not be loaded. Please check the server console for details.</strong></p></div>")
with gr.Accordion("AI Text Examples", open=False):
gr.Examples(
examples=AI_texts,
inputs=text_input,
label="",
)
with gr.Accordion("Human Text Examples", open=False):
gr.Examples(
examples=Human_texts,
inputs=text_input,
label="",
)
gr.Markdown(bottom_text, elem_id="bottom_text")
if __name__ == "__main__":
iface.launch(share=False) |