import gradio as gr from transformers import pipeline def load_model(): return pipeline( "text-generation", model="bigcode/santacoder", # Smaller than DeepSeek for CPU device="cpu" ) model = load_model() def generate_code(prompt): try: response = model( f"<|user|>{prompt}<|assistant|>", max_new_tokens=100, temperature=0.7, do_sample=True ) return response[0]['generated_text'].split("<|assistant|>")[-1] except Exception as e: return f"Error: {str(e)}" demo = gr.Interface( fn=generate_code, inputs=gr.Textbox(lines=5, placeholder="Ask a coding question..."), outputs=gr.Code(language="python"), title="CPU-Friendly Coding Assistant", description="This simplified version works on free CPU hardware" ) demo.launch(server_name="0.0.0.0", server_port=7860)