File size: 12,213 Bytes
829724b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import re
from presidio_analyzer import AnalyzerEngine, PatternRecognizer, Pattern
from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
from typing import List, Dict, Any

def clean_text(text: str) -> str:
    """

    Remove HTML tags and normalize whitespace in the input text.

    """
    text = re.sub(r"<[^>]+>", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text


def setup_presidio_analyzer():
    analyzer = AnalyzerEngine()

    # Aadhar number pattern recognization
    aadhar_pattern = Pattern(
        name="AADHAR_PATTERN", 
        regex=r"\b\d{4}\s\d{4}\s\d{4}\b", 
        score=0.9
    )
    aadhar_recognizer = PatternRecognizer(
        supported_entity="AADHAR_NUM", 
        patterns=[aadhar_pattern]
    )

    #  credit card: 16 digits in groups of 4 
    credit_card_pattern = Pattern(
        name="CREDIT_CARD_PATTERN", 
        regex=r"\b(?:\d{4}[-\s]?){3}\d{4}\b", 
        score=0.85
    )
    credit_card_recognizer = PatternRecognizer(
        supported_entity="CREDIT_DEBIT_NO", 
        patterns=[credit_card_pattern]
    )

    # Expiry date: MM/YY or MM/YYYY
    expiry_pattern = Pattern(
        name="EXPIRY_PATTERN", 
        regex=r"\b(0[1-9]|1[0-2])[/\-](0?[0-9]|[0-9]{2}|[0-9]{4})\b", 
        score=0.8
    )
    expiry_recognizer = PatternRecognizer(
        supported_entity="EXPIRY_NO", 
        patterns=[expiry_pattern]
    )

    # DOB: DD-MM-YYYY or DD/MM/YYYY
    dob_pattern = Pattern(
        name="DOB_PATTERN", 
        regex=r"\b(0[1-9]|[12][0-9]|3[01])[-/](0[1-9]|1[0-2])[-/](19|20)\d{2}\b", 
        score=0.9
    )
    dob_recognizer = PatternRecognizer(
        supported_entity="DOB", 
        patterns=[dob_pattern]
    )

    # Phone number
    phone_pattern = Pattern(
        name="PHONE_PATTERN", 
        regex=r"(?:\+\d{1,3}[-.\s]?)?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}", 
        score=0.8
    )
    phone_recognizer = PatternRecognizer(
        supported_entity="PHONE_NUMBER", 
        patterns=[phone_pattern]
    )

    # Register recognizers
    analyzer.registry.add_recognizer(credit_card_recognizer)
    analyzer.registry.add_recognizer(aadhar_recognizer)
    analyzer.registry.add_recognizer(expiry_recognizer)
    analyzer.registry.add_recognizer(dob_recognizer)
    analyzer.registry.add_recognizer(phone_recognizer)

    return analyzer


def post_process_dates(text: str, entities: List[Dict]) -> List[Dict]:
    """Reclassify dates based on context keywords."""
    for entity in entities:
        if entity["entity_type"] in ["DOB", "EXPIRY_NO"]:
            start, end = entity["start"], entity["end"]
            context_start = max(0, start - 30)
            context_end = min(len(text), end + 30)
            snippet = text[context_start:context_end].lower()
            
            # Keywords for DOB
            dob_keywords = ["born", "birth", "dob", "date of birth"]
            # Keywords for expiry
            expiry_keywords = ["expiry", "exp", "expires", "valid until", "valid till"]
            
            if any(keyword in snippet for keyword in dob_keywords):
                entity["entity_type"] = "DOB"
            elif any(keyword in snippet for keyword in expiry_keywords):
                entity["entity_type"] = "EXPIRY_NO"
    
    return entities


def resolve_overlapping_entities(entities: List[Dict]) -> List[Dict]:
    """Remove overlapping entities, keeping the one with higher confidence."""
    if not entities:
        return entities
    
    # Sort by start position
    entities.sort(key=lambda x: x["start"])
    
    resolved_entities = []
    for current in entities:
        if not resolved_entities:
            resolved_entities.append(current)
            continue
        
        last = resolved_entities[-1]
        
        # Check for overlap
        if current["start"] < last["end"]:
            current_score = current.get("score", 0)
            last_score = last.get("score", 0)
            current_length = current["end"] - current["start"]
            last_length = last["end"] - last["start"]
            
            if (current_score > last_score or 
                (current_score == last_score and current_length > last_length)):
                # Replace last with current
                resolved_entities[-1] = current
        else:
            # No overlap, add current entity
            resolved_entities.append(current)
    
    return resolved_entities


def detect_cvv_from_context(text: str) -> List[Dict]:
    """

    Detect CVV numbers based on context keywords and patterns

    """
    cvv_entities = []
    
    # CVV keywords that typically precede CVV numbers
    cvv_keywords = [
        r"cvv",
        r"cvc", 
        r"security\s+code",
        r"card\s+verification",
        r"verification\s+code",
        r"card\s+security\s+code",
        r"three\s+digit\s+code",
        r"four\s+digit\s+code"
    ]
    
    # Search keyword patterns
    for keyword in cvv_keywords:
        # keyword followed by optional separators and 3-4 digits
        pattern = rf"(?i){keyword}[\s:,\-]*(\d{{3,4}})"
        
        for match in re.finditer(pattern, text):
            cvv_digits = match.group(1)
            digit_start = match.start(1)
            digit_end = match.end(1)
            
            #validation to ensure it's likely a CVV
            if len(cvv_digits) in [3, 4]:
                # Checking context to avoid false positives
                context_start = max(0, match.start() - 20)
                context_end = min(len(text), match.end() + 20)
                context = text[context_start:context_end].lower()
                
                # Keywords to avoid in cvv dectection
                false_positive_keywords = [
                    "year", "date", "phone", "zip", "postal", 
                    "age", "quantity", "amount", "price"
                ]
                
                # Checking for a false positive
                is_likely_cvv = not any(fp_keyword in context for fp_keyword in false_positive_keywords)
                
                if is_likely_cvv:
                    cvv_entities.append({
                        "entity_type": "CVV_NO",
                        "start": digit_start,
                        "end": digit_end,
                        "entity": cvv_digits,
                        "score": 0.9,
                        "context": context.strip()
                    })
    
    # Also looking for standalone 3-4 digit numbers near card-related keywords
    card_keywords = [
        r"card", r"credit", r"debit", r"payment", r"expire", r"expiry", r"valid"
    ]
    
    # Find all 3-4 digi
    digit_pattern = r"\b(\d{3,4})\b"
    for digit_match in re.finditer(digit_pattern, text):
        digit_text = digit_match.group(1)
        digit_start = digit_match.start(1)
        digit_end = digit_match.end(1)
        
        # Checking if this digit sequence is near card-related keywords
        context_start = max(0, digit_start - 50)
        context_end = min(len(text), digit_end + 50)
        context = text[context_start:context_end].lower()
        
        # Checking if card-related keywords in context
        has_card_context = any(re.search(rf"\b{keyword}\b", context) for keyword in card_keywords)
        
        # Checking for things to avoid card, price or date
        likely_cvv_context = (
            has_card_context and 
            not re.search(r"\d{4}[-/]\d{2}[-/]\d{2,4}", context) and 
            not re.search(r"\$\d+", context) and 
            not re.search(r"\d{4}\s*\d{4}\s*\d{4}\s*\d{4}", context) and 
            len(digit_text) in [3, 4]
        )
        
        if likely_cvv_context:
            # To avoid duplicates
            is_duplicate = any(
                existing["start"] == digit_start and existing["end"] == digit_end 
                for existing in cvv_entities
            )
            
            if not is_duplicate:
                cvv_entities.append({
                    "entity_type": "CVV_NO",
                    "start": digit_start,
                    "end": digit_end,
                    "entity": digit_text,
                    "score": 0.7, 
                    "context": context.strip()
                })
    
    return cvv_entities


def mask_pii(text: str) -> Dict[str, Any]:
    """

    Mask personally identifiable information in the given text.

  

    """
    analyzer = setup_presidio_analyzer()
    anonymizer = AnonymizerEngine()

    # Clean the input text
    cleaned_text = clean_text(text)

    # Detect PII on cleaned text
    analyzer_results = analyzer.analyze(
        text=cleaned_text,
        entities=[
            "PERSON", "EMAIL_ADDRESS", "PHONE_NUMBER", 
            "DOB", "AADHAR_NUM", "CREDIT_DEBIT_NO", 
            "EXPIRY_NO"
        ],
        language="en"
    )

    # Map entity types to consistent naming
    entity_mapping = {
        "PERSON": "full_name",
        "EMAIL_ADDRESS": "email",
        "PHONE_NUMBER": "phone_number",
        "DOB": "dob",
        "AADHAR_NUM": "aadhar_num",
        "CREDIT_DEBIT_NO": "credit_debit_no",
        "CVV_NO": "cvv_no",
        "EXPIRY_NO": "expiry_no",
    }

    # Convert analyzer results to our format
    entities = []
    for result in analyzer_results:
        entity_type = result.entity_type
        start, end = result.start, result.end
        entity_text = cleaned_text[start:end]
        score = result.score
        
        entities.append({
            "entity_type": entity_type,
            "start": start,
            "end": end,
            "entity": entity_text,
            "score": score
        })

    # context-based CVV detection
    cvv_entities = detect_cvv_from_context(cleaned_text)
    entities.extend(cvv_entities)

    # Post-process dates based on context
    entities = post_process_dates(cleaned_text, entities)
    
    # Resolving overlapping entities
    entities = resolve_overlapping_entities(entities)

    # final masked entities list
    masked_entities = []
    for entity in entities:
        classification = entity_mapping.get(entity["entity_type"], entity["entity_type"].lower())
        masked_entities.append({
            "position": [entity["start"], entity["end"]],
            "classification": classification,
            "entity": entity["entity"],
        })

    # Sort entities by position
    masked_entities.sort(key=lambda x: x["position"][0])

    # Recreate analyzer results for anonymization with resolved positions
    final_analyzer_results = []
    for entity in entities:
        from presidio_analyzer import RecognizerResult
        result = RecognizerResult(
            entity_type=entity["entity_type"],
            start=entity["start"],
            end=entity["end"],
            score=entity.get("score", 0.9)
        )
        final_analyzer_results.append(result)

    # Anonymize the cleaned text
    anonymized = anonymizer.anonymize(
        text=cleaned_text,
        analyzer_results=final_analyzer_results,
        operators={
            "PERSON": OperatorConfig("replace", {"new_value": "[full_name]"}),
            "EMAIL_ADDRESS": OperatorConfig("replace", {"new_value": "[email]"}),
            "PHONE_NUMBER": OperatorConfig("replace", {"new_value": "[phone_number]"}),
            "DOB": OperatorConfig("replace", {"new_value": "[dob]"}),
            "AADHAR_NUM": OperatorConfig("replace", {"new_value": "[aadhar_num]"}),
            "CREDIT_DEBIT_NO": OperatorConfig("replace", {"new_value": "[credit_debit_no]"}),
            "CVV_NO": OperatorConfig("replace", {"new_value": "[cvv_no]"}),
            "EXPIRY_NO": OperatorConfig("replace", {"new_value": "[expiry_no]"}),
        }
    )

    return {
        "masked_email": anonymized.text,
        "list_of_masked_entities": masked_entities,
    }