Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,932 Bytes
a64057f a8cd919 a64057f a8cd919 a64057f a8cd919 15c9922 4dee588 6b47922 4dee588 a64057f 6b47922 19d5b19 35f8197 1f51f2a da115ec 1a72207 35f8197 1f51f2a da115ec 37a6dbb bbc9f79 6b47922 19d5b19 fd51bf1 15c9922 a64057f 1f51f2a 15c9922 a64057f 4dee588 cfb5dbc 4dee588 19d5b19 4dee588 6fdfebf 4dee588 a64057f fd51bf1 1f51f2a 15c9922 1f51f2a a2247f7 1f51f2a a2247f7 a64057f a8cd919 6b47922 fd51bf1 15c9922 7bc3f5d 15c9922 4dee588 a64057f a2247f7 6b47922 15c9922 6b47922 1f51f2a 6b47922 1f51f2a 7bc3f5d 1f51f2a 15c9922 1f51f2a a2247f7 7bc3f5d a2247f7 15c9922 6b47922 a64057f 15c9922 6b47922 15c9922 6b47922 a2247f7 0ee69c7 a8cd919 19d5b19 a8cd919 a64057f 6b47922 a64057f a8cd919 6b47922 a8cd919 6b47922 1f51f2a 7bc3f5d a2247f7 6b47922 a64057f a8cd919 760694f a64057f a8cd919 4dee588 1f51f2a a64057f a8cd919 15c9922 6b47922 a8cd919 a64057f a8cd919 15c9922 fd51bf1 15c9922 6b47922 15c9922 6b47922 1f51f2a 6b47922 1f51f2a 6b47922 15c9922 a64057f 760694f a8cd919 760694f a8cd919 a64057f a8cd919 a64057f a8cd919 15c9922 fd51bf1 15c9922 fd51bf1 a64057f 15c9922 a8cd919 a64057f fd51bf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
from compel import Compel, ReturnedEmbeddingsType
from huggingface_hub import login, HfApi
import os
# Add your Hugging Face token here or set it as an environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# --- LoRA Mapping ---
LORA_MAPPING = {
"LoCon_d128-128_a16-32_n151_b4_lr=3e-04-5e-05_joycaption_seed=100-20": {
"repo": "rfyuan/waiREALCN_v14_LoRA",
"file": "LoCon_d128.128_a16.32_n151_b4-lr=3.00e-04-5.00e-05_joycaption_seed=100-20.safetensors"
},
"LoCon_d128-128_a16-32_n151_b4_lr=5e-04-5e-05_joycaption_seed=100-18": {
"repo": "rfyuan/waiREALCN_v14_LoRA",
"file": "LoCon_d128.128_a16.32_n151_b4-lr=5.00e-04-5.00e-05_joycaption_seed=100-18.safetensors"
},
}
# --- End LoRA Mapping ---
# --- Define a single repository for all dynamic LoRAs ---
DYNAMIC_LORA_REPO = "rfyuan/waiREALCN_v14_LoRA"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = None
compel = None
model_loaded = False
FAILED_LORAS = set()
AVAILABLE_DYNAMIC_LORAS = []
try:
pipe = StableDiffusionXLPipeline.from_pretrained(
"rfyuan/waiREALCN_v14_usdf",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
truncate_long_prompts=False
)
model_loaded = True
except Exception as e:
print(f"Failed to load model: {e}")
# --- Fetch dynamic LoRAs from the specified repo at startup ---
if model_loaded:
print(f"Fetching available LoRAs from {DYNAMIC_LORA_REPO}...")
try:
api = HfApi()
repo_files = api.list_repo_files(repo_id=DYNAMIC_LORA_REPO, repo_type="model")
AVAILABLE_DYNAMIC_LORAS = [f for f in repo_files if f.endswith(".safetensors")]
print(f"Found {len(AVAILABLE_DYNAMIC_LORAS)} available LoRAs.")
except Exception as e:
print(f"Failed to fetch LoRAs from repo: {e}")
# --- PRE-DOWNLOADING ONLY FIXED LORAS AT STARTUP ---
if model_loaded:
print("Pre-downloading fixed LoRAs...")
for name, data in LORA_MAPPING.items():
try:
pipe.load_lora_weights(data["repo"], weight_name=data["file"], adapter_name=name)
print(f"Successfully cached LoRA: {name}")
except Exception as e:
print(f"Failed to cache LoRA '{name}': {e}")
FAILED_LORAS.add(name)
print("Unloading all LoRAs from VRAM after caching.")
pipe.unload_lora_weights()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
def process_long_prompt(prompt, negative_prompt=""):
try:
conditioning, pooled = compel([prompt, negative_prompt])
return conditioning, pooled
except Exception as e:
print(f"Long prompt processing failed: {e}, falling back to standard processing")
return None, None
# --- NEW FUNCTION TO REFRESH THE LORA LIST ---
def refresh_lora_list():
print("Refreshing dynamic LoRA list...")
try:
api = HfApi()
repo_files = api.list_repo_files(repo_id=DYNAMIC_LORA_REPO, repo_type="model")
global AVAILABLE_DYNAMIC_LORAS
AVAILABLE_DYNAMIC_LORAS = [f for f in repo_files if f.endswith(".safetensors")]
print(f"Found {len(AVAILABLE_DYNAMIC_LORAS)} available LoRAs.")
return gr.update(choices=["None"] + AVAILABLE_DYNAMIC_LORAS)
except Exception as e:
print(f"Failed to refresh LoRAs from repo: {e}")
return gr.update() # Return an empty update to not change the UI on error
def select_dynamic_lora(lora_name):
if not lora_name or lora_name == "None":
return None, gr.update(visible=False), "No dynamic LoRA selected."
adapter_name = "dynamic_lora_cache_check"
try:
print(f"Pre-caching dynamic LoRA: {lora_name}")
pipe.load_lora_weights(DYNAMIC_LORA_REPO, weight_name=lora_name, adapter_name=adapter_name)
pipe.unload_lora_weights()
status_message = f"✅ LoRA '{lora_name}' is ready to use."
return lora_name, gr.update(label=lora_name, value=0.8, visible=True), status_message
except Exception as e:
print(f"Failed to pre-cache dynamic LoRA {lora_name}: {e}")
status_message = f"Error: Could not cache LoRA '{lora_name}'."
return None, gr.update(visible=False), status_message
@spaces.GPU(duration=30)
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, dynamic_lora_name, dynamic_lora_weight, *lora_weights):
if not model_loaded:
error_img = Image.new('RGB', (width, height), color=(50, 50, 50))
return error_img
pipe.unload_lora_weights()
pipe.disable_lora()
active_loras = []
active_weights = []
# 1. Load pre-defined LoRAs from sliders
for i, lora_name in enumerate(LORA_MAPPING.keys()):
if lora_name in FAILED_LORAS:
continue
weight = lora_weights[i]
if weight > 0:
try:
data = LORA_MAPPING[lora_name]
print(f"Loading pre-defined LoRA: {lora_name}")
pipe.load_lora_weights(data["repo"], weight_name=data["file"], adapter_name=lora_name)
active_loras.append(lora_name)
active_weights.append(weight)
except Exception as e:
print(f"Failed to load LoRA {lora_name} from cache: {e}")
continue
# Load the dynamic LoRA if selected
if dynamic_lora_name and dynamic_lora_name != "None" and dynamic_lora_weight > 0:
try:
adapter_name = "dynamic_lora"
print(f"Loading dynamic LoRA from {DYNAMIC_LORA_REPO}: {dynamic_lora_name}")
pipe.load_lora_weights(DYNAMIC_LORA_REPO, weight_name=dynamic_lora_name, adapter_name=adapter_name)
active_loras.append(adapter_name)
active_weights.append(dynamic_lora_weight)
except Exception as e:
print(f"Failed to load dynamic LoRA {dynamic_lora_name} from cache: {e}")
try:
# 2. Set the weights for all active adapters.
if active_loras:
print(f"Activating LoRAs: {list(zip(active_loras, active_weights))}")
pipe.set_adapters(active_loras, adapter_weights=active_weights)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# 3. Generate the image
use_long_prompt = len(prompt.split()) > 10 or len(prompt) > 200
if use_long_prompt:
conditioning, pooled = process_long_prompt(prompt, negative_prompt)
if conditioning is not None:
output_image = pipe(
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return output_image
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return output_image
except Exception as e:
print(f"Error during generation: {e}")
error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
return error_img
finally:
# 4. Unload all LoRAs to free up VRAM for the next user.
print("Unloading LoRAs to free VRAM.")
pipe.unload_lora_weights()
pipe.disable_lora()
css = """
#col-container {
margin: 0 auto;
max-width: 768px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
if not model_loaded:
gr.Markdown("⚠️ **Model failed to load. Please check logs for errors.**")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
lines=3,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
gr.Markdown("### Select Dynamic LoRA")
with gr.Row():
dynamic_lora_dropdown = gr.Dropdown(
choices=["None"] + AVAILABLE_DYNAMIC_LORAS,
value="None",
label="Available Dynamic LoRAs",
scale=4
)
# --- NEW: Refresh button ---
refresh_button = gr.Button("Refresh", scale=1)
dynamic_lora_status = gr.Markdown()
dynamic_lora_state = gr.State(None)
with gr.Group():
gr.Markdown("### LoRA Weights (0 = Off)")
lora_sliders = []
for name in LORA_MAPPING.keys():
if name in FAILED_LORAS:
continue
slider = gr.Slider(
label=name,
minimum=0.0,
maximum=2.0,
step=0.05,
value=0.0
)
lora_sliders.append(slider)
dynamic_lora_slider = gr.Slider(
label="Dynamic LoRA",
minimum=0.0,
maximum=2.0,
step=0.05,
value=0.8,
visible=False
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="(low quality, worst quality)1.2, very displeasing, 3d, watermark, signature, ugly, poorly drawn"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
# --- MODIFIED: Wire up the dynamic LoRA dropdown and refresh button ---
dynamic_lora_dropdown.change(
fn=select_dynamic_lora,
inputs=[dynamic_lora_dropdown],
outputs=[dynamic_lora_state, dynamic_lora_slider, dynamic_lora_status]
)
refresh_button.click(
fn=refresh_lora_list,
inputs=None,
outputs=[dynamic_lora_dropdown]
)
run_button.click(
fn=infer,
inputs=[
prompt, negative_prompt, seed, randomize_seed,
width, height, guidance_scale, num_inference_steps,
dynamic_lora_state, dynamic_lora_slider
] + lora_sliders,
outputs=[result]
)
demo.queue().launch()
|