Update app.py
Browse files
app.py
CHANGED
@@ -36,28 +36,7 @@ class SummaryRequest(BaseModel):
|
|
36 |
chat_history: list # List of messages
|
37 |
|
38 |
|
39 |
-
# Load Local LLM (Mistral or Llama)
|
40 |
-
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
43 |
|
44 |
-
def generate_local_emotional_response(user_input, questions):
|
45 |
-
"""Generate emotional responses locally using LLaMA/Mistral."""
|
46 |
-
prompt = f"User: {user_input}\n\nBased on this, respond in an empathetic way before asking each question:\n1. {questions[0]}\n2. {questions[1]}\n3. {questions[2]}"
|
47 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
48 |
-
output = model.generate(**inputs, max_length=200)
|
49 |
-
return tokenizer.decode(output[0], skip_special_tokens=True).split("\n")
|
50 |
-
|
51 |
-
@app.post("/get_questions")
|
52 |
-
def get_recommended_questions(request: ChatRequest):
|
53 |
-
input_embedding = embedding_model.encode([request.message], convert_to_numpy=True)
|
54 |
-
distances, indices = question_index.search(input_embedding, 3)
|
55 |
-
retrieved_questions = [questions_df["Questions"].iloc[i] for i in indices[0]]
|
56 |
-
|
57 |
-
# Generate dynamic emotional responses locally
|
58 |
-
enhanced_responses = generate_local_emotional_response(request.message, retrieved_questions)
|
59 |
-
|
60 |
-
return {"questions": enhanced_responses}
|
61 |
|
62 |
@app.post("/summarize_chat")
|
63 |
def summarize_chat(request: SummaryRequest):
|
|
|
36 |
chat_history: list # List of messages
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
@app.post("/summarize_chat")
|
42 |
def summarize_chat(request: SummaryRequest):
|