File size: 5,886 Bytes
ca5b08e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import re
import json
import argparse
import nltk
import markdown2
from bs4 import BeautifulSoup
from tqdm import tqdm
from eval.parallel import parallel_process

def turn_header_to_h1(line):
    # 检查是否是以一个或多个 '#' 开头的标题行
    if line.lstrip().startswith('#'):
        # 去掉开头的 '#' 和其后的空格
        new_line = "# " + line.lstrip().lstrip('#').lstrip()
        return new_line
    else:
        return line

def replace_single_dollar(markdown_text):
    pattern = r'\$(.*?)\$'
    def replace_with_brackets(match):
        formula_content = match.group(1)  # 获取匹配到的公式内容
        return f'\\({formula_content}\\)'

    replaced_text = re.sub(pattern, replace_with_brackets, markdown_text, flags=re.DOTALL)
    
    return replaced_text


def replace_double_dollar(markdown_text):
    pattern = r'\$\$(.*?)\$\$'
    def replace_with_brackets(match):
        formula_content = match.group(1) 
        return f'\\[{formula_content}\\]'
    replaced_text = re.sub(pattern, replace_with_brackets, markdown_text, flags=re.DOTALL)
    
    return replaced_text

def simplify_html_table(html_table):
    # 使用 BeautifulSoup 解析 HTML
    soup = BeautifulSoup(html_table, 'html.parser')
    
    # 找到 <table> 标签
    table = soup.find('table')
    if not table:
        raise ValueError("输入的 HTML 不包含有效的 <table> 标签")
    
    # 创建一个新的 <table> 标签
    new_table = BeautifulSoup('<table></table>', 'html.parser').table
    
    # 提取所有行(包括 <thead> 和 <tbody> 中的行)
    rows = table.find_all(['tr'], recursive=True)
    
    for row in rows:
        # 创建新的 <tr> 标签
        new_row = soup.new_tag('tr')
        
        # 处理每一行中的单元格
        cells = row.find_all(['th', 'td'])
        for cell in cells:
            # 将 <th> 替换为 <td>
            new_cell = soup.new_tag('td')
            if cell.has_attr('rowspan'):
                new_cell['rowspan'] = cell['rowspan']
            if cell.has_attr('colspan'):
                new_cell['colspan'] = cell['colspan']
            new_cell.string = cell.get_text(strip=True)  # 保留单元格内容
            new_row.append(new_cell)
        
        # 将新行添加到新表格中
        new_table.append(new_row)
    
    # 返回简化后的表格 HTML
    return str(new_table)

def evaluate(pred, gt):
    edit_dist = nltk.edit_distance(pred, gt) / max(len(pred), len(gt))
    return 1.0- edit_dist


def main():
    parser = argparse.ArgumentParser(description="Evaluate page_to_markdown task")
    parser.add_argument(
        "workspace",
        help="The filesystem path where work will be stored, can be a local folder",
    )
    parser.add_argument(
        "--gt_file",
        help="Ground truth file",
    )
    parser.add_argument("--n_jobs", type=int, default=40, help="Number of jobs to run in parallel")
    args = parser.parse_args()
    
    pred_data = {}
    for file in os.listdir(args.workspace):
        file_path = os.path.join(args.workspace, file)
        pdf_name = file.split('.')[0] + ".pdf"
        with open(file_path, "r") as f:
            document_text = f.read()
            document_text = replace_single_dollar(replace_double_dollar(document_text))
            markdown_text_list = document_text.split("\n\n")
            new_markdown_text_list = []
            for text in markdown_text_list:
                text = text.strip()
                if (text.startswith("<watermark>") and text.endswith("</watermark>")) or (text.startswith("<img>") and text.endswith("</img>")) or (text.startswith("<page_number>") and text.endswith("</page_number>")) or (text.startswith("<signature>") and text.endswith("</signature>")):
                    continue
                else:
                    html_text = str(markdown2.markdown(text,extras=["tables"]))
                    html_text = html_text.strip()
                    if html_text.startswith("<table>") and html_text.endswith("</table>"):
                        html_table = simplify_html_table(html_text)
                        new_markdown_text_list.append(html_table)
                    else:
                        text = turn_header_to_h1(text)
                        new_markdown_text_list.append(text)

            pred_data[os.path.basename(pdf_name)] = "\n\n".join(new_markdown_text_list)

    filename_list_en = []
    filename_list_zh = []
    gt_data = {}
    with open(args.gt_file, "r") as f:
        for line in f:
            data = json.loads(line)
            markdown = data['markdown']
            pdf_name = data['pdf_name']
            gt_data[pdf_name] = markdown
            if data['language'] == 'en':
                filename_list_en.append(pdf_name)
            else:
                filename_list_zh.append(pdf_name)

    keys = list(gt_data.keys())
    if args.n_jobs == 1:
        scores = [evaluate(pred_data.get(filename, ''), gt_data.get(filename, '')) for filename in tqdm(keys)]
    else:
        inputs = [{'pred': pred_data.get(filename, ''), 'gt': gt_data.get(filename, '')} for filename in keys]
        scores = parallel_process(inputs, evaluate, use_kwargs=True, n_jobs=args.n_jobs, front_num=1)

    total_score_en = 0
    total_num_en = 0
    total_score_zh = 0
    total_num_zh = 0
    for filename, score in zip(keys, scores):
        if filename in filename_list_en:
            print(filename)
            print(score)
            print()
            total_score_en += score
            total_num_en += 1
        elif filename in filename_list_zh:
            total_score_zh += score
            total_num_zh += 1
    print(f"English: {total_score_en / total_num_en}")
    print(f"Chinese: {total_score_zh / total_num_zh}")
    print(f"Total: {sum(scores) / len(scores)}")

if __name__ == "__main__":
    main()