Spaces:
Running
Running
File size: 5,886 Bytes
ca5b08e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import os
import re
import json
import argparse
import nltk
import markdown2
from bs4 import BeautifulSoup
from tqdm import tqdm
from eval.parallel import parallel_process
def turn_header_to_h1(line):
# 检查是否是以一个或多个 '#' 开头的标题行
if line.lstrip().startswith('#'):
# 去掉开头的 '#' 和其后的空格
new_line = "# " + line.lstrip().lstrip('#').lstrip()
return new_line
else:
return line
def replace_single_dollar(markdown_text):
pattern = r'\$(.*?)\$'
def replace_with_brackets(match):
formula_content = match.group(1) # 获取匹配到的公式内容
return f'\\({formula_content}\\)'
replaced_text = re.sub(pattern, replace_with_brackets, markdown_text, flags=re.DOTALL)
return replaced_text
def replace_double_dollar(markdown_text):
pattern = r'\$\$(.*?)\$\$'
def replace_with_brackets(match):
formula_content = match.group(1)
return f'\\[{formula_content}\\]'
replaced_text = re.sub(pattern, replace_with_brackets, markdown_text, flags=re.DOTALL)
return replaced_text
def simplify_html_table(html_table):
# 使用 BeautifulSoup 解析 HTML
soup = BeautifulSoup(html_table, 'html.parser')
# 找到 <table> 标签
table = soup.find('table')
if not table:
raise ValueError("输入的 HTML 不包含有效的 <table> 标签")
# 创建一个新的 <table> 标签
new_table = BeautifulSoup('<table></table>', 'html.parser').table
# 提取所有行(包括 <thead> 和 <tbody> 中的行)
rows = table.find_all(['tr'], recursive=True)
for row in rows:
# 创建新的 <tr> 标签
new_row = soup.new_tag('tr')
# 处理每一行中的单元格
cells = row.find_all(['th', 'td'])
for cell in cells:
# 将 <th> 替换为 <td>
new_cell = soup.new_tag('td')
if cell.has_attr('rowspan'):
new_cell['rowspan'] = cell['rowspan']
if cell.has_attr('colspan'):
new_cell['colspan'] = cell['colspan']
new_cell.string = cell.get_text(strip=True) # 保留单元格内容
new_row.append(new_cell)
# 将新行添加到新表格中
new_table.append(new_row)
# 返回简化后的表格 HTML
return str(new_table)
def evaluate(pred, gt):
edit_dist = nltk.edit_distance(pred, gt) / max(len(pred), len(gt))
return 1.0- edit_dist
def main():
parser = argparse.ArgumentParser(description="Evaluate page_to_markdown task")
parser.add_argument(
"workspace",
help="The filesystem path where work will be stored, can be a local folder",
)
parser.add_argument(
"--gt_file",
help="Ground truth file",
)
parser.add_argument("--n_jobs", type=int, default=40, help="Number of jobs to run in parallel")
args = parser.parse_args()
pred_data = {}
for file in os.listdir(args.workspace):
file_path = os.path.join(args.workspace, file)
pdf_name = file.split('.')[0] + ".pdf"
with open(file_path, "r") as f:
document_text = f.read()
document_text = replace_single_dollar(replace_double_dollar(document_text))
markdown_text_list = document_text.split("\n\n")
new_markdown_text_list = []
for text in markdown_text_list:
text = text.strip()
if (text.startswith("<watermark>") and text.endswith("</watermark>")) or (text.startswith("<img>") and text.endswith("</img>")) or (text.startswith("<page_number>") and text.endswith("</page_number>")) or (text.startswith("<signature>") and text.endswith("</signature>")):
continue
else:
html_text = str(markdown2.markdown(text,extras=["tables"]))
html_text = html_text.strip()
if html_text.startswith("<table>") and html_text.endswith("</table>"):
html_table = simplify_html_table(html_text)
new_markdown_text_list.append(html_table)
else:
text = turn_header_to_h1(text)
new_markdown_text_list.append(text)
pred_data[os.path.basename(pdf_name)] = "\n\n".join(new_markdown_text_list)
filename_list_en = []
filename_list_zh = []
gt_data = {}
with open(args.gt_file, "r") as f:
for line in f:
data = json.loads(line)
markdown = data['markdown']
pdf_name = data['pdf_name']
gt_data[pdf_name] = markdown
if data['language'] == 'en':
filename_list_en.append(pdf_name)
else:
filename_list_zh.append(pdf_name)
keys = list(gt_data.keys())
if args.n_jobs == 1:
scores = [evaluate(pred_data.get(filename, ''), gt_data.get(filename, '')) for filename in tqdm(keys)]
else:
inputs = [{'pred': pred_data.get(filename, ''), 'gt': gt_data.get(filename, '')} for filename in keys]
scores = parallel_process(inputs, evaluate, use_kwargs=True, n_jobs=args.n_jobs, front_num=1)
total_score_en = 0
total_num_en = 0
total_score_zh = 0
total_num_zh = 0
for filename, score in zip(keys, scores):
if filename in filename_list_en:
print(filename)
print(score)
print()
total_score_en += score
total_num_en += 1
elif filename in filename_list_zh:
total_score_zh += score
total_num_zh += 1
print(f"English: {total_score_en / total_num_en}")
print(f"Chinese: {total_score_zh / total_num_zh}")
print(f"Total: {sum(scores) / len(scores)}")
if __name__ == "__main__":
main() |