Spaces:
Running
Running
File size: 11,295 Bytes
ca5b08e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import os
import json
import argparse
import distance
import markdown2
import re
from apted import APTED, Config
from apted.helpers import Tree
from lxml import etree, html
from collections import deque
from tqdm import tqdm
from eval.parallel import parallel_process
from bs4 import BeautifulSoup
def turn_header_to_h1(line):
# 检查是否是以一个或多个 '#' 开头的标题行
if line.lstrip().startswith('#'):
# 去掉开头的 '#' 和其后的空格
new_line = "# " + line.lstrip().lstrip('#').lstrip()
return new_line
else:
return line
def replace_single_dollar(markdown_text):
pattern = r'\$(.*?)\$'
def replace_with_brackets(match):
formula_content = match.group(1) # 获取匹配到的公式内容
return f'\\({formula_content}\\)'
replaced_text = re.sub(pattern, replace_with_brackets, markdown_text, flags=re.DOTALL)
return replaced_text
def replace_double_dollar(markdown_text):
pattern = r'\$\$(.*?)\$\$'
def replace_with_brackets(match):
formula_content = match.group(1)
return f'\\[{formula_content}\\]'
replaced_text = re.sub(pattern, replace_with_brackets, markdown_text, flags=re.DOTALL)
return replaced_text
class TableTree(Tree):
def __init__(self, tag, colspan=None, rowspan=None, content=None, *children):
self.tag = tag
self.colspan = colspan
self.rowspan = rowspan
self.content = content
self.children = list(children)
def bracket(self):
"""Show tree using brackets notation"""
if self.tag == 'td':
result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % \
(self.tag, self.colspan, self.rowspan, self.content)
else:
result = '"tag": %s' % self.tag
for child in self.children:
result += child.bracket()
return "{{{}}}".format(result)
class CustomConfig(Config):
@staticmethod
def maximum(*sequences):
"""Get maximum possible value
"""
return max(map(len, sequences))
def normalized_distance(self, *sequences):
"""Get distance from 0 to 1
"""
return float(distance.levenshtein(*sequences)) / self.maximum(*sequences)
def rename(self, node1, node2):
"""Compares attributes of trees"""
if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
return 1.
if node1.tag == 'td':
if node1.content or node2.content:
return self.normalized_distance(node1.content, node2.content)
return 0.
class TEDS(object):
''' Tree Edit Distance basead Similarity
'''
def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
assert isinstance(n_jobs, int) and (n_jobs >= 1), 'n_jobs must be an integer greather than 1'
self.structure_only = structure_only
self.n_jobs = n_jobs
self.ignore_nodes = ignore_nodes
self.__tokens__ = []
def tokenize(self, node):
''' Tokenizes table cells
'''
self.__tokens__.append('<%s>' % node.tag)
if node.text is not None:
self.__tokens__ += list(node.text)
for n in node.getchildren():
self.tokenize(n)
if node.tag != 'unk':
self.__tokens__.append('</%s>' % node.tag)
if node.tag != 'td' and node.tail is not None:
self.__tokens__ += list(node.tail)
def load_html_tree(self, node, parent=None):
''' Converts HTML tree to the format required by apted
'''
global __tokens__
if node.tag == 'td':
if self.structure_only:
cell = []
else:
self.__tokens__ = []
self.tokenize(node)
cell = self.__tokens__[1:-1].copy()
new_node = TableTree(node.tag,
int(node.attrib.get('colspan', '1')),
int(node.attrib.get('rowspan', '1')),
cell, *deque())
else:
new_node = TableTree(node.tag, None, None, None, *deque())
if parent is not None:
parent.children.append(new_node)
if node.tag != 'td':
for n in node.getchildren():
self.load_html_tree(n, new_node)
if parent is None:
return new_node
def evaluate(self, pred, true):
''' Computes TEDS score between the prediction and the ground truth of a
given sample
'''
if (not pred) or (not true):
return 0.0
pred.replace("<th>","<td>")
pred.replace("</th>","</td>")
pred = "<html>" + pred + "</html>"
true = "<html>" + true + "</html>"
parser = html.HTMLParser(remove_comments=True, encoding='utf-8')
pred = html.fromstring(pred, parser=parser)
true = html.fromstring(true, parser=parser)
if pred.xpath('body/table') and true.xpath('body/table'):
pred = pred.xpath('body/table')[0]
true = true.xpath('body/table')[0]
if self.ignore_nodes:
etree.strip_tags(pred, *self.ignore_nodes)
etree.strip_tags(true, *self.ignore_nodes)
n_nodes_pred = len(pred.xpath(".//*"))
n_nodes_true = len(true.xpath(".//*"))
n_nodes = max(n_nodes_pred, n_nodes_true)
tree_pred = self.load_html_tree(pred)
tree_true = self.load_html_tree(true)
distance = APTED(tree_pred, tree_true, CustomConfig()).compute_edit_distance()
return 1.0 - (float(distance) / n_nodes)
else:
return 0.0
def batch_evaluate(self, pred_json, true_json):
''' Computes TEDS score between the prediction and the ground truth of
a batch of samples
@params pred_json: {'FILENAME': 'HTML CODE', ...}
@params true_json: {'FILENAME': {'html': 'HTML CODE'}, ...}
@output: {'FILENAME': 'TEDS SCORE', ...}
'''
samples = true_json.keys()
if self.n_jobs == 1:
scores = [self.evaluate(pred_json.get(filename, ''), true_json[filename]['html']) for filename in tqdm(samples)]
else:
inputs = [{'pred': pred_json.get(filename, ''), 'true': true_json[filename]['html']} for filename in samples]
scores = parallel_process(inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
total_score_simple = 0
num_simple = 0
total_score_complex = 0
num_complex = 0
total_score = 0
num_total = 0
for filename,score in zip(samples, scores):
print(filename)
print(score)
print('')
if true_json[filename]['type'] == 'simple':
total_score_simple += score
num_simple += 1
elif true_json[filename]['type'] == 'complex':
total_score_complex += score
num_complex += 1
else:
raise ValueError('Unknown type: %s' % true_json[filename]['type'])
total_score += score
num_total += 1
if num_simple > 0:
avg_score_simple = total_score_simple / num_simple
else:
avg_score_simple = 0
if num_complex > 0:
avg_score_complex = total_score_complex / num_complex
else:
avg_score_complex = 0
avg_score = total_score / num_total
print({'simple': (num_simple,avg_score_simple), 'complex': (num_complex,avg_score_complex), 'total': (num_total,avg_score)})
def simplify_html_table(html_table):
# 使用 BeautifulSoup 解析 HTML
soup = BeautifulSoup(html_table, 'html.parser')
# 找到 <table> 标签
table = soup.find('table')
if not table:
raise ValueError("输入的 HTML 不包含有效的 <table> 标签")
# 创建一个新的 <table> 标签
new_table = BeautifulSoup('<table></table>', 'html.parser').table
# 提取所有行(包括 <thead> 和 <tbody> 中的行)
rows = table.find_all(['tr'], recursive=True)
for row in rows:
# 创建新的 <tr> 标签
new_row = soup.new_tag('tr')
# 处理每一行中的单元格
cells = row.find_all(['th', 'td'])
for cell in cells:
# 将 <th> 替换为 <td>
new_cell = soup.new_tag('td')
if cell.has_attr('rowspan'):
new_cell['rowspan'] = cell['rowspan']
if cell.has_attr('colspan'):
new_cell['colspan'] = cell['colspan']
new_cell.string = cell.get_text(strip=True) # 保留单元格内容
new_row.append(new_cell)
# 将新行添加到新表格中
new_table.append(new_row)
# 返回简化后的表格 HTML
return str(new_table)
def main():
parser = argparse.ArgumentParser(description="Evaluate page_to_markdown task")
parser.add_argument(
"workspace",
help="The filesystem path where work will be stored, can be a local folder",
)
parser.add_argument(
"--gt_file",
help="Ground truth file",
)
parser.add_argument("--n_jobs", type=int, default=40, help="Number of jobs to run in parallel")
args = parser.parse_args()
pred_data = {}
for file in os.listdir(args.workspace):
file_path = os.path.join(args.workspace, file)
pdf_name = file.split('.')[0] + ".png"
with open(file_path, "r") as f:
document_text = f.read()
document_text = replace_single_dollar(replace_double_dollar(document_text))
markdown_text_list = document_text.split("\n\n")
new_markdown_text_list = []
for text in markdown_text_list:
text = text.strip()
if (text.startswith("<watermark>") and text.endswith("</watermark>")) or (text.startswith("<img>") and text.endswith("</img>")) or (text.startswith("<page_number>") and text.endswith("</page_number>")) or (text.startswith("<signature>") and text.endswith("</signature>")):
continue
else:
html_text = str(markdown2.markdown(text,extras=["tables"]))
html_text = html_text.strip()
if html_text.startswith("<table>") and html_text.endswith("</table>"):
html_table = simplify_html_table(html_text)
new_markdown_text_list.append(html_table)
else:
text = turn_header_to_h1(text)
new_markdown_text_list.append(text)
pred_data[os.path.basename(pdf_name)] = "\n\n".join(new_markdown_text_list)
gt_data = {}
with open(args.gt_file, "r") as f:
for line in f:
data = json.loads(line)
gt_data[data['image_name']] = {'html':data['gt_table'], 'type':data['type']}
teds = TEDS(n_jobs=args.n_jobs, ignore_nodes=['b', 'thead', 'tbody'])
teds.batch_evaluate(pred_data, gt_data)
if __name__ == "__main__":
main() |