Spaces:
Running
Running
File size: 11,479 Bytes
ca5b08e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import json
import copy
from PIL import Image
from pypdf import PdfReader
from vllm import LLM, SamplingParams
from ocrflux.image_utils import get_page_image
from ocrflux.table_format import table_matrix2html
from ocrflux.prompts import PageResponse, build_page_to_markdown_prompt, build_element_merge_detect_prompt, build_html_table_merge_prompt
def build_qwen2_5_vl_prompt(question):
return (
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
f"<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
f"{question}<|im_end|>\n"
"<|im_start|>assistant\n"
)
def build_page_to_markdown_query(file_path: str, page_number: int, target_longest_image_dim: int = 1024, image_rotation: int = 0) -> dict:
assert image_rotation in [0, 90, 180, 270], "Invalid image rotation provided in build_page_query"
image = get_page_image(file_path, page_number, target_longest_image_dim=target_longest_image_dim, image_rotation=image_rotation)
question = build_page_to_markdown_prompt()
prompt = build_qwen2_5_vl_prompt(question)
query = {
"prompt": prompt,
"multi_modal_data": {"image": image},
}
return query
def build_element_merge_detect_query(text_list_1,text_list_2) -> dict:
image = Image.new('RGB', (28, 28), color='black')
question = build_element_merge_detect_prompt(text_list_1,text_list_2)
prompt = build_qwen2_5_vl_prompt(question)
query = {
"prompt": prompt,
"multi_modal_data": {"image": image},
}
return query
def build_html_table_merge_query(text_1,text_2) -> dict:
image = Image.new('RGB', (28, 28), color='black')
question = build_html_table_merge_prompt(text_1,text_2)
prompt = build_qwen2_5_vl_prompt(question)
query = {
"prompt": prompt,
"multi_modal_data": {"image": image},
}
return query
def bulid_document_text(page_to_markdown_result, element_merge_detect_result, html_table_merge_result):
page_to_markdown_keys = list(page_to_markdown_result.keys())
element_merge_detect_keys = list(element_merge_detect_result.keys())
html_table_merge_keys = list(html_table_merge_result.keys())
for page_1,page_2,elem_idx_1,elem_idx_2 in sorted(html_table_merge_keys,key=lambda x: -x[0]):
page_to_markdown_result[page_1][elem_idx_1] = html_table_merge_result[(page_1,page_2,elem_idx_1,elem_idx_2)]
page_to_markdown_result[page_2][elem_idx_2] = ''
for page_1,page_2 in sorted(element_merge_detect_keys,key=lambda x: -x[0]):
for elem_idx_1,elem_idx_2 in element_merge_detect_result[(page_1,page_2)]:
if len(page_to_markdown_result[page_1][elem_idx_1]) == 0 or page_to_markdown_result[page_1][elem_idx_1][-1] == '-' or ('\u4e00' <= page_to_markdown_result[page_1][elem_idx_1][-1] <= '\u9fff'):
page_to_markdown_result[page_1][elem_idx_1] = page_to_markdown_result[page_1][elem_idx_1] + '' + page_to_markdown_result[page_2][elem_idx_2]
else:
page_to_markdown_result[page_1][elem_idx_1] = page_to_markdown_result[page_1][elem_idx_1] + ' ' + page_to_markdown_result[page_2][elem_idx_2]
page_to_markdown_result[page_2][elem_idx_2] = ''
document_text_list = []
for page in page_to_markdown_keys:
page_text_list = [s for s in page_to_markdown_result[page] if s]
document_text_list += page_text_list
return "\n\n".join(document_text_list)
def parse(llm,file_path,skip_cross_page_merge=False,max_page_retries=0):
sampling_params = SamplingParams(temperature=0.0,max_tokens=8192)
if file_path.lower().endswith(".pdf"):
try:
reader = PdfReader(file_path)
num_pages = reader.get_num_pages()
except:
return None
else:
num_pages = 1
try:
# Stage 1: Page to Markdown
page_to_markdown_query_list = [build_page_to_markdown_query(file_path,page_num) for page_num in range(1, num_pages + 1)]
responses = llm.generate(page_to_markdown_query_list, sampling_params=sampling_params)
results = [response.outputs[0].text for response in responses]
page_to_markdown_result = {}
retry_list = []
for i,result in enumerate(results):
try:
json_data = json.loads(result)
page_response = PageResponse(**json_data)
natural_text = page_response.natural_text
markdown_element_list = []
for text in natural_text.split('\n\n'):
if text.startswith("<Image>") and text.endswith("</Image>"):
pass
elif text.startswith("<table>") and text.endswith("</table>"):
try:
new_text = table_matrix2html(text)
except:
new_text = text.replace("<t>","").replace("<l>","").replace("<lt>","")
markdown_element_list.append(new_text)
else:
markdown_element_list.append(text)
page_to_markdown_result[i+1] = markdown_element_list
except:
retry_list.append(i)
attempt = 0
while len(retry_list) > 0 and attempt < max_page_retries:
retry_page_to_markdown_query_list = [build_page_to_markdown_query(file_path,page_num) for page_num in retry_list]
retry_sampling_params = SamplingParams(temperature=0.1*attempt, max_tokens=8192)
responses = llm.generate(retry_page_to_markdown_query_list, sampling_params=retry_sampling_params)
results = [response.outputs[0].text for response in responses]
next_retry_list = []
for i,result in zip(retry_list,results):
try:
json_data = json.loads(result)
page_response = PageResponse(**json_data)
natural_text = page_response.natural_text
markdown_element_list = []
for text in natural_text.split('\n\n'):
if text.startswith("<Image>") and text.endswith("</Image>"):
pass
elif text.startswith("<table>") and text.endswith("</table>"):
try:
new_text = table_matrix2html(text)
except:
new_text = text.replace("<t>","").replace("<l>","").replace("<lt>","")
markdown_element_list.append(new_text)
else:
markdown_element_list.append(text)
page_to_markdown_result[i+1] = markdown_element_list
except:
next_retry_list.append(i)
retry_list = next_retry_list
attempt += 1
page_texts = {}
fallback_pages = []
for page_number in range(1, num_pages+1):
if page_number not in page_to_markdown_result.keys():
fallback_pages.append(page_number-1)
else:
page_texts[str(page_number-1)] = "\n\n".join(page_to_markdown_result[page_number])
if skip_cross_page_merge:
document_text_list = []
for i in range(num_pages):
if i not in fallback_pages:
document_text_list.append(page_texts[str(i)])
document_text = "\n\n".join(document_text_list)
return {
"orig_path": file_path,
"num_pages": num_pages,
"document_text": document_text,
"page_texts": page_texts,
"fallback_pages": fallback_pages,
}
# Stage 2: Element Merge Detect
element_merge_detect_keys = []
element_merge_detect_query_list = []
for page_num in range(1,num_pages):
if page_num in page_to_markdown_result.keys() and page_num+1 in page_to_markdown_result.keys():
element_merge_detect_query_list.append(build_element_merge_detect_query(page_to_markdown_result[page_num],page_to_markdown_result[page_num+1]))
element_merge_detect_keys.append((page_num,page_num+1))
responses = llm.generate(element_merge_detect_query_list, sampling_params=sampling_params)
results = [response.outputs[0].text for response in responses]
element_merge_detect_result = {}
for key,result in zip(element_merge_detect_keys,results):
try:
element_merge_detect_result[key] = eval(result)
except:
pass
# Stage 3: HTML Table Merge
html_table_merge_keys = []
for key,result in element_merge_detect_result.items():
page_1,page_2 = key
for elem_idx_1,elem_idx_2 in result:
text_1 = page_to_markdown_result[page_1][elem_idx_1]
text_2 = page_to_markdown_result[page_2][elem_idx_2]
if text_1.startswith("<table>") and text_1.endswith("</table>") and text_2.startswith("<table>") and text_2.endswith("</table>"):
html_table_merge_keys.append((page_1,page_2,elem_idx_1,elem_idx_2))
html_table_merge_keys = sorted(html_table_merge_keys,key=lambda x: -x[0])
html_table_merge_result = {}
page_to_markdown_result_tmp = copy.deepcopy(page_to_markdown_result)
i = 0
while i < len(html_table_merge_keys):
tmp = set()
keys = []
while i < len(html_table_merge_keys):
page_1,page_2,elem_idx_1,elem_idx_2 = html_table_merge_keys[i]
if (page_2,elem_idx_2) in tmp:
break
tmp.add((page_1,elem_idx_1))
keys.append((page_1,page_2,elem_idx_1,elem_idx_2))
i += 1
html_table_merge_query_list = [build_html_table_merge_query(page_to_markdown_result_tmp[page_1][elem_idx_1],page_to_markdown_result_tmp[page_2][elem_idx_2]) for page_1,page_2,elem_idx_1,elem_idx_2 in keys]
responses = llm.generate(html_table_merge_query_list, sampling_params=sampling_params)
results = [response.outputs[0].text for response in responses]
for key,result in zip(keys,results):
if result.startswith("<table>") and result.endswith("</table>"):
html_table_merge_result[key] = result
page_to_markdown_result_tmp[page_1][elem_idx_1] = result
document_text = bulid_document_text(page_to_markdown_result, element_merge_detect_result, html_table_merge_result)
return {
"orig_path": file_path,
"num_pages": num_pages,
"document_text": document_text,
"page_texts": page_texts,
"fallback_pages": fallback_pages,
}
except:
return None
if __name__ == '__main__':
file_path = 'test.pdf'
llm = LLM(model="ChatDOC/OCRFlux-3B",gpu_memory_utilization=0.8,max_model_len=8192)
result = parse(llm,file_path,max_page_retries=4)
if result != None:
document_markdown = result['document_text']
print(document_markdown)
with open('test.md','w') as f:
f.write(document_markdown)
else:
print("Parse failed")
|