File size: 11,479 Bytes
ca5b08e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import json
import copy
from PIL import Image
from pypdf import PdfReader
from vllm import LLM, SamplingParams
from ocrflux.image_utils import get_page_image
from ocrflux.table_format import table_matrix2html
from ocrflux.prompts import PageResponse, build_page_to_markdown_prompt, build_element_merge_detect_prompt, build_html_table_merge_prompt

def build_qwen2_5_vl_prompt(question):
    return (
            "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
            f"<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
            f"{question}<|im_end|>\n"
            "<|im_start|>assistant\n"
    )

def build_page_to_markdown_query(file_path: str, page_number: int, target_longest_image_dim: int = 1024, image_rotation: int = 0) -> dict:
    assert image_rotation in [0, 90, 180, 270], "Invalid image rotation provided in build_page_query"
    image = get_page_image(file_path, page_number, target_longest_image_dim=target_longest_image_dim, image_rotation=image_rotation)
    question = build_page_to_markdown_prompt()
    prompt = build_qwen2_5_vl_prompt(question)
    query = {
        "prompt": prompt,
        "multi_modal_data": {"image": image},
    }
    return query

def build_element_merge_detect_query(text_list_1,text_list_2) -> dict:
    image = Image.new('RGB', (28, 28), color='black')
    question = build_element_merge_detect_prompt(text_list_1,text_list_2)
    prompt = build_qwen2_5_vl_prompt(question)
    query = {
        "prompt": prompt,
        "multi_modal_data": {"image": image},
    }
    return query
    
def build_html_table_merge_query(text_1,text_2) -> dict:
    image = Image.new('RGB', (28, 28), color='black')
    question = build_html_table_merge_prompt(text_1,text_2)
    prompt = build_qwen2_5_vl_prompt(question)
    query = {
        "prompt": prompt,
        "multi_modal_data": {"image": image},
    }
    return query

def bulid_document_text(page_to_markdown_result, element_merge_detect_result, html_table_merge_result):
    page_to_markdown_keys = list(page_to_markdown_result.keys())
    element_merge_detect_keys = list(element_merge_detect_result.keys())
    html_table_merge_keys = list(html_table_merge_result.keys())

    for page_1,page_2,elem_idx_1,elem_idx_2 in sorted(html_table_merge_keys,key=lambda x: -x[0]):
        page_to_markdown_result[page_1][elem_idx_1] = html_table_merge_result[(page_1,page_2,elem_idx_1,elem_idx_2)]
        page_to_markdown_result[page_2][elem_idx_2] = ''

    for page_1,page_2 in sorted(element_merge_detect_keys,key=lambda x: -x[0]):
        for elem_idx_1,elem_idx_2 in element_merge_detect_result[(page_1,page_2)]:
            if len(page_to_markdown_result[page_1][elem_idx_1]) == 0 or page_to_markdown_result[page_1][elem_idx_1][-1] == '-' or ('\u4e00' <= page_to_markdown_result[page_1][elem_idx_1][-1] <= '\u9fff'):
                page_to_markdown_result[page_1][elem_idx_1] = page_to_markdown_result[page_1][elem_idx_1] + '' + page_to_markdown_result[page_2][elem_idx_2]
            else:
                page_to_markdown_result[page_1][elem_idx_1] = page_to_markdown_result[page_1][elem_idx_1] + ' ' + page_to_markdown_result[page_2][elem_idx_2]
            page_to_markdown_result[page_2][elem_idx_2] = ''
    
    document_text_list = []
    for page in page_to_markdown_keys:
        page_text_list = [s for s in page_to_markdown_result[page] if s]
        document_text_list += page_text_list
    return "\n\n".join(document_text_list)

def parse(llm,file_path,skip_cross_page_merge=False,max_page_retries=0):
    sampling_params = SamplingParams(temperature=0.0,max_tokens=8192)
    if file_path.lower().endswith(".pdf"):
        try:
            reader = PdfReader(file_path)
            num_pages = reader.get_num_pages()
        except:
            return None
    else:
        num_pages = 1
    
    try:
        # Stage 1: Page to Markdown
        page_to_markdown_query_list = [build_page_to_markdown_query(file_path,page_num) for page_num in range(1, num_pages + 1)]
        responses = llm.generate(page_to_markdown_query_list, sampling_params=sampling_params)
        results = [response.outputs[0].text for response in responses]
        page_to_markdown_result = {}
        retry_list = []
        for i,result in enumerate(results):
            try:
                json_data = json.loads(result)
                page_response = PageResponse(**json_data)
                natural_text = page_response.natural_text
                markdown_element_list = []
                for text in natural_text.split('\n\n'):
                    if text.startswith("<Image>") and text.endswith("</Image>"):
                        pass
                    elif text.startswith("<table>") and text.endswith("</table>"):
                        try:
                            new_text = table_matrix2html(text)
                        except:
                            new_text = text.replace("<t>","").replace("<l>","").replace("<lt>","")
                        markdown_element_list.append(new_text)
                    else:
                        markdown_element_list.append(text)
                page_to_markdown_result[i+1] = markdown_element_list
            except:
                retry_list.append(i)
        
        attempt = 0
        while len(retry_list) > 0 and attempt < max_page_retries:
            retry_page_to_markdown_query_list = [build_page_to_markdown_query(file_path,page_num) for page_num in retry_list]
            retry_sampling_params = SamplingParams(temperature=0.1*attempt, max_tokens=8192)
            responses = llm.generate(retry_page_to_markdown_query_list, sampling_params=retry_sampling_params)
            results = [response.outputs[0].text for response in responses]
            next_retry_list = []
            for i,result in zip(retry_list,results):
                try:
                    json_data = json.loads(result)
                    page_response = PageResponse(**json_data)
                    natural_text = page_response.natural_text
                    markdown_element_list = []
                    for text in natural_text.split('\n\n'):
                        if text.startswith("<Image>") and text.endswith("</Image>"):
                            pass
                        elif text.startswith("<table>") and text.endswith("</table>"):
                            try:
                                new_text = table_matrix2html(text)
                            except:
                                new_text = text.replace("<t>","").replace("<l>","").replace("<lt>","")
                            markdown_element_list.append(new_text)
                        else:
                            markdown_element_list.append(text)
                    page_to_markdown_result[i+1] = markdown_element_list
                except:
                    next_retry_list.append(i)
            retry_list = next_retry_list
            attempt += 1

        page_texts = {}
        fallback_pages = []
        for page_number in range(1, num_pages+1):
            if page_number not in page_to_markdown_result.keys():
                fallback_pages.append(page_number-1)
            else:
                page_texts[str(page_number-1)] = "\n\n".join(page_to_markdown_result[page_number])
        
        if skip_cross_page_merge:
            document_text_list = []
            for i in range(num_pages):
                if i not in fallback_pages:
                    document_text_list.append(page_texts[str(i)])
            document_text = "\n\n".join(document_text_list)
            return {
                "orig_path": file_path,
                "num_pages": num_pages,
                "document_text": document_text,
                "page_texts": page_texts,
                "fallback_pages": fallback_pages,
            }
        
        # Stage 2: Element Merge Detect
        element_merge_detect_keys = []
        element_merge_detect_query_list = []
        for page_num in range(1,num_pages):
            if page_num in page_to_markdown_result.keys() and page_num+1 in page_to_markdown_result.keys():
                element_merge_detect_query_list.append(build_element_merge_detect_query(page_to_markdown_result[page_num],page_to_markdown_result[page_num+1]))
                element_merge_detect_keys.append((page_num,page_num+1))
        responses = llm.generate(element_merge_detect_query_list, sampling_params=sampling_params)
        results = [response.outputs[0].text for response in responses]
        element_merge_detect_result = {}
        for key,result in zip(element_merge_detect_keys,results):
            try:
                element_merge_detect_result[key] = eval(result)
            except:
                pass        

        # Stage 3: HTML Table Merge
        html_table_merge_keys = []
        for key,result in element_merge_detect_result.items():
            page_1,page_2 = key
            for elem_idx_1,elem_idx_2 in result:
                text_1 = page_to_markdown_result[page_1][elem_idx_1]
                text_2 = page_to_markdown_result[page_2][elem_idx_2]
                if text_1.startswith("<table>") and text_1.endswith("</table>") and text_2.startswith("<table>") and text_2.endswith("</table>"):
                    html_table_merge_keys.append((page_1,page_2,elem_idx_1,elem_idx_2))

        html_table_merge_keys = sorted(html_table_merge_keys,key=lambda x: -x[0])

        html_table_merge_result = {}
        page_to_markdown_result_tmp = copy.deepcopy(page_to_markdown_result)
        i = 0       
        while i < len(html_table_merge_keys):
            tmp = set()
            keys = []
            while i < len(html_table_merge_keys):
                page_1,page_2,elem_idx_1,elem_idx_2 = html_table_merge_keys[i]
                if (page_2,elem_idx_2) in tmp:
                    break
                tmp.add((page_1,elem_idx_1))
                keys.append((page_1,page_2,elem_idx_1,elem_idx_2))
                i += 1
            
            html_table_merge_query_list = [build_html_table_merge_query(page_to_markdown_result_tmp[page_1][elem_idx_1],page_to_markdown_result_tmp[page_2][elem_idx_2]) for page_1,page_2,elem_idx_1,elem_idx_2 in keys]
            responses = llm.generate(html_table_merge_query_list, sampling_params=sampling_params)
            results = [response.outputs[0].text for response in responses]
            for key,result in zip(keys,results):
                if result.startswith("<table>") and result.endswith("</table>"):
                    html_table_merge_result[key] = result
                    page_to_markdown_result_tmp[page_1][elem_idx_1] = result

        document_text = bulid_document_text(page_to_markdown_result, element_merge_detect_result, html_table_merge_result)
        return {
            "orig_path": file_path,
            "num_pages": num_pages,
            "document_text": document_text,
            "page_texts": page_texts,
            "fallback_pages": fallback_pages,
        }
    except:
        return None


if __name__ == '__main__':
    file_path = 'test.pdf'
    llm = LLM(model="ChatDOC/OCRFlux-3B",gpu_memory_utilization=0.8,max_model_len=8192)
    result = parse(llm,file_path,max_page_retries=4)
    if result != None:
        document_markdown = result['document_text']
        print(document_markdown)
        with open('test.md','w') as f:
            f.write(document_markdown)
    else:
        print("Parse failed")