Spaces:
Running
Running
File size: 36,190 Bytes
ca5b08e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 |
import argparse
import asyncio
import atexit
import base64
import json
import logging
import shutil
import os
import copy
import random
import re
import sys
import time
from concurrent.futures.process import BrokenProcessPool
from io import BytesIO
from urllib.parse import urlparse
import httpx
from huggingface_hub import snapshot_download
from PIL import Image
from pypdf import PdfReader
from tqdm import tqdm
from ocrflux.check import (
check_poppler_version,
check_vllm_version,
check_torch_gpu_available,
)
from ocrflux.image_utils import get_page_image, is_image
from ocrflux.table_format import trans_markdown_text
from ocrflux.metrics import MetricsKeeper, WorkerTracker
from ocrflux.prompts import PageResponse, build_page_to_markdown_prompt, build_element_merge_detect_prompt, build_html_table_merge_prompt
from ocrflux.work_queue import LocalWorkQueue, WorkQueue
# Initialize logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.propagate = False
vllm_logger = logging.getLogger("vllm")
vllm_logger.propagate = False
file_handler = logging.FileHandler("OCRFlux-debug.log", mode="a")
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s"))
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s"))
# Add handlers to the logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)
vllm_logger.addHandler(file_handler)
# Quiet logs from pypdf
logging.getLogger("pypdf").setLevel(logging.ERROR)
# Global variables for token statistics
metrics = MetricsKeeper(window=60 * 5)
tracker = WorkerTracker()
def build_page_to_markdown_query(args, pdf_path: str, page_number: int, target_longest_image_dim: int, image_rotation: int = 0) -> dict:
assert image_rotation in [0, 90, 180, 270], "Invalid image rotation provided in build_page_query"
image = get_page_image(pdf_path, page_number, target_longest_image_dim=target_longest_image_dim, image_rotation=image_rotation)
buffered = BytesIO()
image.save(buffered, format="PNG")
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {
"model": args.model,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": build_page_to_markdown_prompt()},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
],
"temperature": 0.0,
}
def build_element_merge_detect_query(args,text_list_1,text_list_2) -> dict:
image = Image.new('RGB', (28, 28), color='black')
buffered = BytesIO()
image.save(buffered, format="PNG")
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
return {
"model": args.model,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": build_element_merge_detect_prompt(text_list_1,text_list_2)},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
],
"temperature": 0.0,
}
def build_html_table_merge_query(args,text_1,text_2) -> dict:
image = Image.new('RGB', (28, 28), color='black')
buffered = BytesIO()
image.save(buffered, format="PNG")
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
return {
"model": args.model,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": build_html_table_merge_prompt(text_1,text_2)},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
],
"temperature": 0.0,
}
# Manual simple implementation of HTTP Post
# It feels strange perhaps, but httpx and aiohttp are very complex beasts
# Ex. the sessionpool in httpcore has 4 different locks in it, and I've noticed
# that at the scale of 100M+ requests, that they deadlock in different strange ways
async def apost(url, json_data):
parsed_url = urlparse(url)
host = parsed_url.hostname
port = parsed_url.port or 80
path = parsed_url.path or "/"
writer = None
try:
reader, writer = await asyncio.open_connection(host, port)
json_payload = json.dumps(json_data)
request = (
f"POST {path} HTTP/1.1\r\n"
f"Host: {host}\r\n"
f"Content-Type: application/json\r\n"
f"Content-Length: {len(json_payload)}\r\n"
f"Connection: close\r\n\r\n"
f"{json_payload}"
)
writer.write(request.encode())
await writer.drain()
# Read status line
status_line = await reader.readline()
if not status_line:
raise ConnectionError("No response from server")
status_parts = status_line.decode().strip().split(" ", 2)
if len(status_parts) < 2:
raise ValueError(f"Malformed status line: {status_line.decode().strip()}")
status_code = int(status_parts[1])
# Read headers
headers = {}
while True:
line = await reader.readline()
if line in (b"\r\n", b"\n", b""):
break
key, _, value = line.decode().partition(":")
headers[key.strip().lower()] = value.strip()
# Read response body
if "content-length" in headers:
body_length = int(headers["content-length"])
response_body = await reader.readexactly(body_length)
else:
raise ConnectionError("Anything other than fixed content length responses are not implemented yet")
return status_code, response_body
except Exception as e:
# Pass through errors
raise e
finally:
# But just make sure to close the socket on your way out
if writer is not None:
try:
writer.close()
await writer.wait_closed()
except:
pass
async def process_task(args, worker_id, task_name, task_args):
COMPLETION_URL = f"http://localhost:{args.port}/v1/chat/completions"
MAX_RETRIES = args.max_page_retries
TEMPERATURE_BY_ATTEMPT = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
exponential_backoffs = 0
local_image_rotation = 0
attempt = 0
await tracker.track_work(worker_id, f"{worker_id}", "started")
while attempt < MAX_RETRIES:
if task_name == 'page_to_markdown':
pdf_path,page_number = task_args
query = build_page_to_markdown_query(args, pdf_path, page_number, args.target_longest_image_dim, image_rotation=local_image_rotation)
elif task_name == 'element_merge_detect':
text_list_1,text_list_2 = task_args
query = build_element_merge_detect_query(args, text_list_1, text_list_2)
elif task_name == 'html_table_merge':
table_1,table_2 = task_args
query = build_html_table_merge_query(args, table_1, table_2)
query["temperature"] = TEMPERATURE_BY_ATTEMPT[
min(attempt, len(TEMPERATURE_BY_ATTEMPT) - 1)
] # Change temperature as number of attempts increases to overcome repetition issues at expense of quality
try:
status_code, response_body = await apost(COMPLETION_URL, json_data=query)
if status_code == 400:
raise ValueError(f"Got BadRequestError from server: {response_body}, skipping this response")
elif status_code == 500:
raise ValueError(f"Got InternalServerError from server: {response_body}, skipping this response")
elif status_code != 200:
raise ValueError(f"Error http status {status_code}")
base_response_data = json.loads(response_body)
metrics.add_metrics(
vllm_input_tokens=base_response_data["usage"].get("prompt_tokens", 0),
vllm_output_tokens=base_response_data["usage"].get("completion_tokens", 0),
)
response_content = base_response_data["choices"][0]["message"]["content"]
if task_name == 'page_to_markdown':
model_response_json = json.loads(response_content)
page_response = PageResponse(**model_response_json)
if not page_response.is_rotation_valid and attempt < MAX_RETRIES - 1:
local_image_rotation = page_response.rotation_correction
raise ValueError(f"invalid_page rotation")
try:
return_data = trans_markdown_text(page_response.natural_text,"matrix2html")
except:
if attempt < MAX_RETRIES - 1:
raise
else:
return_data = page_response.natural_text.replace("<t>","").replace("<l>","").replace("<lt>","")
elif task_name == 'element_merge_detect':
pattern = r"\((\d+), (\d+)\)"
matches = re.findall(pattern, response_content)
return_data = [(int(x), int(y)) for x, y in matches]
elif task_name == 'html_table_merge':
if not (response_content.startswith("<table>") and response_content.endswith("</table>")):
raise ValueError("Response is not a table")
return_data = response_content
else:
raise ValueError(f"Unknown task_name {task_name}")
await tracker.track_work(worker_id, f"{worker_id}", "finished")
return return_data
except (ConnectionError, OSError, asyncio.TimeoutError) as e:
logger.warning(f"Client error on attempt {attempt} for {worker_id}: {type(e)} {e}")
# Now we want to do exponential backoff, and not count this as an actual page retry
# Page retrys are supposed to be for fixing bad results from the model, but actual requests to vllm
# are supposed to work. Probably this means that the server is just restarting
sleep_delay = 10 * (2**exponential_backoffs)
exponential_backoffs += 1
logger.info(f"Sleeping for {sleep_delay} seconds on {worker_id} to allow server restart")
await asyncio.sleep(sleep_delay)
except asyncio.CancelledError:
logger.info(f"Process {worker_id} cancelled")
await tracker.track_work(worker_id, f"{worker_id}", "cancelled")
raise
except json.JSONDecodeError as e:
logger.warning(f"JSON decode error on attempt {attempt} for {worker_id}: {e}")
attempt += 1
except ValueError as e:
logger.warning(f"ValueError on attempt {attempt} for {worker_id}: {type(e)} - {e}")
attempt += 1
except Exception as e:
logger.exception(f"Unexpected error on attempt {attempt} for {worker_id}: {type(e)} - {e}")
attempt += 1
logger.error(f"Failed to process {worker_id} after {MAX_RETRIES} attempts.")
await tracker.track_work(worker_id, f"{worker_id}", "errored")
return None
def postprocess_markdown_text(args, response_text, pdf_path, page_number):
text_list = response_text.split("\n\n")
new_text_list = []
for text in text_list:
if text.startswith("<Image>") and text.endswith("</Image>"):
pass
else:
new_text_list.append(text)
return "\n\n".join(new_text_list)
def bulid_document_text(page_to_markdown_result, element_merge_detect_result, html_table_merge_result):
page_to_markdown_keys = list(page_to_markdown_result.keys())
element_merge_detect_keys = list(element_merge_detect_result.keys())
html_table_merge_keys = list(html_table_merge_result.keys())
for page_1,page_2,elem_idx_1,elem_idx_2 in sorted(html_table_merge_keys,key=lambda x: -x[0]):
page_to_markdown_result[page_1][elem_idx_1] = html_table_merge_result[(page_1,page_2,elem_idx_1,elem_idx_2)]
page_to_markdown_result[page_2][elem_idx_2] = ''
for page_1,page_2 in sorted(element_merge_detect_keys,key=lambda x: -x[0]):
for elem_idx_1,elem_idx_2 in element_merge_detect_result[(page_1,page_2)]:
if len(page_to_markdown_result[page_1][elem_idx_1]) == 0 or page_to_markdown_result[page_1][elem_idx_1][-1] == '-' or ('\u4e00' <= page_to_markdown_result[page_1][elem_idx_1][-1] <= '\u9fff'):
page_to_markdown_result[page_1][elem_idx_1] = page_to_markdown_result[page_1][elem_idx_1] + '' + page_to_markdown_result[page_2][elem_idx_2]
else:
page_to_markdown_result[page_1][elem_idx_1] = page_to_markdown_result[page_1][elem_idx_1] + ' ' + page_to_markdown_result[page_2][elem_idx_2]
page_to_markdown_result[page_2][elem_idx_2] = ''
document_text_list = []
for page in page_to_markdown_keys:
page_text_list = [s for s in page_to_markdown_result[page] if s]
document_text_list += page_text_list
return "\n\n".join(document_text_list)
async def process_pdf(args, worker_id: int, pdf_path: str):
logger.info(f"Start process_pdf for {pdf_path}")
if pdf_path.lower().endswith(".pdf"):
try:
reader = PdfReader(pdf_path)
num_pages = reader.get_num_pages()
except:
logger.exception(f"Could not count number of pages for {pdf_path}, aborting document")
return None
else:
num_pages = 1
logger.info(f"Got {num_pages} pages to do for {pdf_path} in worker {worker_id}")
try:
tasks = []
results = []
async with asyncio.TaskGroup() as tg:
for page_num in range(1, num_pages + 1):
task = tg.create_task(process_task(args, worker_id, task_name='page_to_markdown', task_args=(pdf_path,page_num)))
tasks.append(task)
results = [task.result() for task in tasks]
fallback_pages = []
page_to_markdown_result = {}
page_pairs = []
for i,result in enumerate(results):
if result != None:
page_number = i+1
page_to_markdown_result[i+1] = postprocess_markdown_text(args,result,pdf_path,page_number).split("\n\n")
if page_number-1 in page_to_markdown_result.keys():
page_pairs.append((page_number-1,page_number))
else:
fallback_pages.append(i)
num_fallback_pages = len(fallback_pages)
if num_fallback_pages / num_pages > args.max_page_error_rate:
logger.error(
f"Document {pdf_path} has {num_fallback_pages} fallback pages out of {num_pages} exceeding max_page_error_rate of {args.max_page_error_rate}, discarding document."
)
return None
elif num_fallback_pages > 0:
logger.warning(
f"Document {pdf_path} processed with {num_fallback_pages} fallback pages out of {num_pages}."
)
if args.skip_cross_page_merge:
page_texts = {}
document_text_list = []
sorted_page_keys = sorted(list(page_to_markdown_result.keys()))
for page_number in sorted_page_keys:
page_texts[str(page_number-1)] = "\n\n".join(page_to_markdown_result[page_number])
document_text_list.append(page_texts[str(page_number-1)])
document_text = "\n\n".join(document_text_list)
return {
"orig_path": pdf_path,
"num_pages": num_pages,
"document_text": document_text,
"page_texts": page_texts,
"fallback_pages": fallback_pages,
}
tasks = []
results = []
async with asyncio.TaskGroup() as tg:
for page_1,page_2 in page_pairs:
task = tg.create_task(process_task(args, worker_id, task_name='element_merge_detect', task_args=(page_to_markdown_result[page_1], page_to_markdown_result[page_2])))
tasks.append(task)
results = [task.result() for task in tasks]
element_merge_detect_result = {}
table_pairs = []
for page_pair,result in zip(page_pairs,results):
if result != None:
page_1,page_2 = page_pair
element_merge_detect_result[(page_1,page_2)] = result
for elem_idx_1,elem_idx_2 in result:
text_1 = page_to_markdown_result[page_1][elem_idx_1]
text_2 = page_to_markdown_result[page_2][elem_idx_2]
if text_1.startswith("<table>") and text_1.endswith("</table>") and text_2.startswith("<table>") and text_2.endswith("</table>"):
table_pairs.append((page_1,page_2,elem_idx_1,elem_idx_2))
tmp_page_to_markdown_result = copy.deepcopy(page_to_markdown_result)
table_pairs = sorted(table_pairs,key=lambda x: -x[0])
html_table_merge_result = {}
i = 0
while i < len(table_pairs):
async with asyncio.TaskGroup() as tg:
tasks = []
ids_1 = []
ids_2 = []
page_1,page_2,elem_idx_1,elem_idx_2 = table_pairs[i]
task = tg.create_task(process_task(args, worker_id, task_name='html_table_merge', task_args=(tmp_page_to_markdown_result[page_1][elem_idx_1], tmp_page_to_markdown_result[page_2][elem_idx_2])))
tasks.append(task)
ids_1.append((page_1,elem_idx_1))
ids_2.append((page_2,elem_idx_2))
j = i + 1
while j < len(table_pairs):
page_1,page_2,elem_idx_1,elem_idx_2 = table_pairs[j]
if (page_2, elem_idx_2) not in ids_1:
task = tg.create_task(process_task(args, worker_id, task_name='html_table_merge', task_args=(tmp_page_to_markdown_result[page_1][elem_idx_1], tmp_page_to_markdown_result[page_2][elem_idx_2])))
tasks.append(task)
ids_1.append((page_1,elem_idx_1))
ids_2.append((page_2,elem_idx_2))
j = j + 1
else:
break
results = [task.result() for task in tasks]
for k,result in enumerate(results):
page_1,elem_idx_1 = ids_1[k]
page_2,elem_idx_2 = ids_2[k]
if result != None:
html_table_merge_result[(page_1,page_2,elem_idx_1,elem_idx_2)] = result
tmp_page_to_markdown_result[page_1][elem_idx_1] = html_table_merge_result[(page_1,page_2,elem_idx_1,elem_idx_2)]
i = j
page_texts = {}
for page_number in page_to_markdown_result.keys():
page_texts[str(page_number-1)] = "\n\n".join(page_to_markdown_result[page_number])
document_text = bulid_document_text(page_to_markdown_result, element_merge_detect_result, html_table_merge_result)
return {
"orig_path": pdf_path,
"num_pages": num_pages,
"document_text": document_text,
"page_texts": page_texts,
"fallback_pages": fallback_pages,
}
except Exception as e:
# Check for ExceptionGroup with BrokenProcessPool
if isinstance(e, ExceptionGroup):
broken_pool, other = e.split(BrokenProcessPool)
if broken_pool is not None: # Found at least one BrokenProcessPool
logger.critical("Encountered BrokenProcessPool, exiting process.")
sys.exit(1)
logger.exception(f"Exception in process_pdf for {pdf_path}: {e}")
return None
async def process_json(args, worker_id: int, json_path: str):
try:
json_data = json.load(open(json_path,'r'))
except:
logger.exception(f"Could not load {json_path}, aborting document")
try:
if args.task == 'merge_pages':
page_1 = json_data['page_1'].split("\n\n")
page_2 = json_data['page_2'].split("\n\n")
async with asyncio.TaskGroup() as tg:
task = tg.create_task(process_task(args, worker_id, task_name='element_merge_detect', task_args=(page_1, page_2)))
result = task.result()
return {
"orig_path": json_path,
"merge_pairs": result
}
elif args.task == 'merge_tables':
table_1 = json_data['table_1']
table_2 = json_data['table_2']
async with asyncio.TaskGroup() as tg:
task = tg.create_task(process_task(args, worker_id, task_name='html_table_merge', task_args=(table_1, table_2)))
result = task.result()
return {
"orig_path": json_path,
"merged_tables": result
}
else:
raise ValueError(f"Unknown task {args.task}")
except Exception as e:
# Check for ExceptionGroup with BrokenProcessPool
if isinstance(e, ExceptionGroup):
broken_pool, other = e.split(BrokenProcessPool)
if broken_pool is not None: # Found at least one BrokenProcessPool
logger.critical("Encountered BrokenProcessPool, exiting process.")
sys.exit(1)
logger.exception(f"Exception in process_json for {json_path}: {e}")
return None
async def worker(args, work_queue: WorkQueue, semaphore, worker_id):
while True:
# Wait until allowed to proceed
await semaphore.acquire()
work_item = await work_queue.get_work()
if work_item is None:
logger.info(f"Worker {worker_id} exiting due to empty queue")
semaphore.release()
break
logger.info(f"Worker {worker_id} processing work item {work_item.hash}")
await tracker.clear_work(worker_id)
try:
async with asyncio.TaskGroup() as tg:
if args.task == 'pdf2markdown':
tasks = [tg.create_task(process_pdf(args, worker_id, pdf_path)) for pdf_path in work_item.work_paths]
elif args.task == 'merge_pages' or args.task == 'merge_tables':
tasks = [tg.create_task(process_json(args, worker_id, json_path)) for json_path in work_item.work_paths]
else:
raise ValueError(f"Unknown task {args.task}")
logger.info(f"Created all tasks for {work_item.hash}")
logger.info(f"Finished TaskGroup for worker on {work_item.hash}")
results = []
for task in tasks:
try:
result = task.result()
except:
pass
if result is not None:
results.append(result)
logger.info(f"Got {len(results)} docs for {work_item.hash}")
output_final_path = os.path.join(args.workspace, "results", f"output_{work_item.hash}.jsonl")
with open(output_final_path, "w") as f:
for result in results:
f.write(json.dumps(result))
f.write("\n")
await work_queue.mark_done(work_item)
except Exception as e:
logger.exception(f"Exception occurred while processing work_hash {work_item.hash}: {e}")
finally:
semaphore.release()
async def vllm_server_task(args, semaphore):
model_name_or_path = args.model
cmd = [
"vllm",
"serve",
model_name_or_path,
"--port",
str(args.port),
"--max-model-len",
str(args.model_max_context),
"--gpu_memory_utilization",
str(0.8)
]
proc = await asyncio.create_subprocess_exec(
*cmd,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
# Ensure the subprocess is terminated on exit
def _kill_proc():
proc.terminate()
atexit.register(_kill_proc)
# Shared variables between tasks
last_running_req, last_queue_req = 0, 0
server_printed_ready_message = False
last_semaphore_release = time.time()
async def process_line(line):
nonlocal last_running_req, last_queue_req, last_semaphore_release, server_printed_ready_message
vllm_logger.info(line)
# if the server hasn't initialized yet, log all the lines to the main logger also, so that the user
# can see any warnings/errors more easily
if not server_printed_ready_message:
logger.info(line)
if "Detected errors during sampling" in line:
logger.error("Cannot continue, sampling errors detected, model is probably corrupt")
sys.exit(1)
# TODO, need to trace down this issue in vllm itself, but it will otherwise cause the server to lock up
if "IndexError: list index out of range" in line:
logger.error("IndexError in model, restarting server")
proc.terminate()
if not server_printed_ready_message and "The server is fired up and ready to roll!" in line:
server_printed_ready_message = True
last_semaphore_release = time.time()
match = re.search(r"Running: (\d+)", line)
if match:
last_running_req = int(match.group(1))
match = re.search(r"(?:Waiting|Pending):\s*(\d+)", line)
if match:
last_queue_req = int(match.group(1))
logger.info(f"vllm running req: {last_running_req} queue req: {last_queue_req}")
async def read_stream(stream):
while True:
line = await stream.readline()
if not line:
break
try:
line = line.decode("utf-8").rstrip()
await process_line(line)
except Exception as ex:
logger.warning(f"Got {ex} when reading log line from inference server, skipping")
async def timeout_task():
nonlocal last_running_req, last_queue_req, last_semaphore_release
try:
while True:
await asyncio.sleep(1)
if server_printed_ready_message and last_queue_req == 0 and time.time() - last_semaphore_release > 30 and semaphore.locked():
semaphore.release()
last_semaphore_release = time.time()
logger.info("Semaphore released, allowing a worker to proceed.")
except asyncio.CancelledError:
pass # Clean up if the task is cancelled
# Start tasks to read stdout, stderr, and handle timeout logic
stdout_task = asyncio.create_task(read_stream(proc.stdout))
stderr_task = asyncio.create_task(read_stream(proc.stderr))
timeout_task = asyncio.create_task(timeout_task())
try:
await proc.wait()
except asyncio.CancelledError:
logger.info("Got cancellation request for VLLM server")
proc.terminate()
raise
timeout_task.cancel()
await asyncio.gather(stdout_task, stderr_task, timeout_task, return_exceptions=True)
async def vllm_server_host(args, semaphore):
MAX_RETRIES = 5
retry = 0
while retry < MAX_RETRIES:
await vllm_server_task(args, semaphore)
logger.warning("VLLM server task ended")
retry += 1
if retry >= MAX_RETRIES:
logger.error(f"Ended up starting the vllm server more than {retry} times, cancelling pipeline")
logger.error("")
logger.error("Please make sure vllm is installed according to the latest instructions here: https://docs.vllm.ai/start/install.html")
sys.exit(1)
async def vllm_server_ready(args):
max_attempts = 300
delay_sec = 1
url = f"http://localhost:{args.port}/v1/models"
for attempt in range(1, max_attempts + 1):
try:
async with httpx.AsyncClient() as session:
response = await session.get(url)
if response.status_code == 200:
logger.info("vllm server is ready.")
return
else:
logger.info(f"Attempt {attempt}: Unexpected status code {response.status_code}")
except Exception:
logger.warning(f"Attempt {attempt}: Please wait for vllm server to become ready...")
await asyncio.sleep(delay_sec)
raise Exception("vllm server did not become ready after waiting.")
async def download_model(model_name_or_path: str):
if os.path.isabs(model_name_or_path) and os.path.isdir(model_name_or_path):
logger.info(f"Using local model path at '{model_name_or_path}'")
else:
logger.info(f"Downloading model with hugging face '{model_name_or_path}'")
snapshot_download(repo_id=model_name_or_path)
async def metrics_reporter(work_queue):
while True:
# Leading newlines preserve table formatting in logs
logger.info(f"Queue remaining: {work_queue.size}")
logger.info("\n" + str(metrics))
logger.info("\n" + str(await tracker.get_status_table()))
await asyncio.sleep(10)
async def main():
parser = argparse.ArgumentParser(description="Manager for running millions of PDFs through a batch inference pipeline")
parser.add_argument(
"workspace",
help="The filesystem path where work will be stored, can be a local folder",
)
parser.add_argument("--task", type=str, choices=['pdf2markdown','merge_pages','merge_tables'], default='pdf2markdown', help="task names, could be 'pdf2markdown', 'merge_pages' or 'merge_tables'")
parser.add_argument(
"--data",
nargs="*",
help="List of paths to files to process",
default=None,
)
parser.add_argument("--pages_per_group", type=int, default=500, help="Aiming for this many pdf pages per work item group")
parser.add_argument("--max_page_retries", type=int, default=8, help="Max number of times we will retry rendering a page")
parser.add_argument("--max_page_error_rate", type=float, default=0.004, help="Rate of allowable failed pages in a document, 1/250 by default")
parser.add_argument("--workers", type=int, default=8, help="Number of workers to run at a time")
# Model parameters
parser.add_argument(
"--model",
help="The path to the model",
default="ChatDOC/OCRFlux-3B",
)
parser.add_argument("--model_max_context", type=int, default=16384, help="Maximum context length that the model was fine tuned under")
parser.add_argument("--model_chat_template", type=str, default="qwen2-vl", help="Chat template to pass to vllm server")
parser.add_argument("--target_longest_image_dim", type=int, help="Dimension on longest side to use for rendering the pdf pages", default=1024)
parser.add_argument("--skip_cross_page_merge", action="store_true", help="Whether to skip cross-page merging")
parser.add_argument("--port", type=int, default=40078, help="Port to use for the VLLM server")
args = parser.parse_args()
if os.path.exists(args.workspace):
shutil.rmtree(args.workspace)
# We need poppler to load the initial pdfs, even if we are not processing them here
check_poppler_version()
work_queue = LocalWorkQueue(args.workspace)
if args.task == 'pdf2markdown':
pdf_work_paths = set()
for pdf_path in args.data:
if os.path.exists(pdf_path):
if pdf_path.lower().endswith(".pdf") and open(pdf_path, "rb").read(4) == b"%PDF":
logger.info(f"Loading file at {pdf_path} as PDF document")
pdf_work_paths.add(pdf_path)
elif is_image(pdf_path):
logger.info(f"Loading file at {pdf_path} as image document")
pdf_work_paths.add(pdf_path)
else:
raise ValueError(f"Unsupported file extension for {pdf_path}")
else:
raise ValueError(f"{pdf_path} does not exist")
logger.info(f"Found {len(pdf_work_paths):,} total pdf paths to add")
# Estimate average pages per pdf
sample_size = min(100, len(pdf_work_paths))
sampled_pdfs = random.sample(list(pdf_work_paths), sample_size)
page_counts = []
for pdf_path in tqdm(sampled_pdfs, desc="Sampling PDFs to calculate optimal length"):
try:
if pdf_path.lower().endswith(".pdf"):
reader = PdfReader(pdf_path)
page_counts.append(len(reader.pages))
else:
page_counts.append(1)
except Exception as e:
logger.warning(f"Failed to read {pdf_path}: {e}")
if page_counts:
avg_pages_per_pdf = sum(page_counts) / len(page_counts)
else:
logger.warning("Could not read any PDFs to estimate average page count.")
avg_pages_per_pdf = 10 # Default to 10 pages per PDF if sampling fails
items_per_group = max(1, int(args.pages_per_group / avg_pages_per_pdf))
logger.info(f"Calculated items_per_group: {items_per_group} based on average pages per PDF: {avg_pages_per_pdf:.2f}")
# Now call populate_queue
await work_queue.populate_queue(pdf_work_paths, items_per_group)
elif args.task == 'merge_pages' or args.task == 'merge_tables':
json_work_paths = set()
for json_path in args.data:
if os.path.exists(json_path):
if json_path.lower().endswith(".json"):
json_work_paths.add(json_path)
elif json_path.lower().endswith(".txt"):
logger.info(f"Loading file at {json_path} as list of paths")
with open(json_path, "r") as f:
json_work_paths |= set(filter(None, (line.strip() for line in f)))
else:
raise ValueError(f"Unsupported file extension for {json_path}")
else:
raise ValueError(f"{json_path} does not exist")
# Now call populate_queue
await work_queue.populate_queue(json_work_paths, args.pages_per_group)
# If you get this far, then you are doing inference and need a GPU
check_vllm_version()
check_torch_gpu_available()
logger.info(f"Starting pipeline with PID {os.getpid()}")
# Download the model before you do anything else
await download_model(args.model)
# Initialize the work queue
qsize = await work_queue.initialize_queue()
if qsize == 0:
logger.info("No work to do, exiting")
return
# Create a semaphore to control worker access
# We only allow one worker to move forward with requests, until the server has no more requests in its queue
# This lets us get full utilization by having many workers, but also to be outputting dolma docs as soon as possible
# As soon as one worker is no longer saturating the gpu, the next one can start sending requests
semaphore = asyncio.Semaphore(1)
vllm_server = asyncio.create_task(vllm_server_host(args, semaphore))
await vllm_server_ready(args)
metrics_task = asyncio.create_task(metrics_reporter(work_queue))
# Create worker tasks to process the queue concurrently.
worker_tasks = []
for i in range(args.workers):
task = asyncio.create_task(worker(args, work_queue, semaphore, worker_id=i))
worker_tasks.append(task)
# Wait for all worker tasks to finish
await asyncio.gather(*worker_tasks)
vllm_server.cancel()
metrics_task.cancel()
logger.info("Work done")
if __name__ == "__main__":
asyncio.run(main())
|