标签
new_row = soup.new_tag('tr')
# 处理每一行中的单元格
cells = row.find_all(['th', 'td'])
for cell in cells:
# 将 替换为 |
new_cell = soup.new_tag('td')
new_cell.string = cell.get_text(strip=True) # 保留单元格内容
new_row.append(new_cell)
# 将新行添加到新表格中
new_table.append(new_row)
# 返回简化后的表格 HTML
return str(new_table)
def evaluate(pred, gt):
edit_dist = nltk.edit_distance(pred, gt) / max(len(pred), len(gt))
return 1.0- edit_dist
def main():
parser = argparse.ArgumentParser(description="Evaluate page_to_markdown task")
parser.add_argument(
"workspace",
help="The filesystem path where work will be stored, can be a local folder",
)
parser.add_argument(
"--gt_file",
help="Ground truth file",
)
parser.add_argument("--n_jobs", type=int, default=40, help="Number of jobs to run in parallel")
args = parser.parse_args()
pred_data = {}
root_dir = os.path.join(args.workspace, "results")
for jsonl_file in os.listdir(root_dir):
if jsonl_file.endswith(".jsonl"):
with open(os.path.join(root_dir, jsonl_file), "r") as f:
for line in f:
data = json.loads(line)
pdf_path = data['metadata']['Source-File']
document_text = data['text']
document_text = replace_single_dollar(replace_double_dollar(document_text))
markdown_text_list = document_text.split("\n\n")
new_markdown_text_list = []
for text in markdown_text_list:
html_text = str(markdown2.markdown(text,extras=["tables"]))
html_text = html_text.strip()
if html_text.startswith("") and html_text.endswith(" "):
html_table = simplify_html_table(html_text)
new_markdown_text_list.append(html_table)
else:
text = turn_header_to_h1(text)
new_markdown_text_list.append(text)
pred_data[os.path.basename(pdf_path)] = "\n\n".join(new_markdown_text_list)
filename_list_en = []
filename_list_zh = []
gt_data = {}
with open(args.gt_file, "r") as f:
for line in f:
data = json.loads(line)
markdown = data['markdown']
pdf_name = data['pdf_name']
gt_data[pdf_name] = markdown
if data['language'] == 'en':
filename_list_en.append(pdf_name)
else:
filename_list_zh.append(pdf_name)
keys = list(gt_data.keys())
if args.n_jobs == 1:
scores = [evaluate(pred_data.get(filename, ''), gt_data.get(filename, '')) for filename in tqdm(keys)]
else:
inputs = [{'pred': pred_data.get(filename, ''), 'gt': gt_data.get(filename, '')} for filename in keys]
scores = parallel_process(inputs, evaluate, use_kwargs=True, n_jobs=args.n_jobs, front_num=1)
total_score_en = 0
total_num_en = 0
total_score_zh = 0
total_num_zh = 0
for filename, score in zip(keys, scores):
if filename in filename_list_en:
print(filename)
print(score)
print()
total_score_en += score
total_num_en += 1
elif filename in filename_list_zh:
total_score_zh += score
total_num_zh += 1
print(f"English: {total_score_en / total_num_en}")
print(f"Chinese: {total_score_zh / total_num_zh}")
print(f"Total: {sum(scores) / len(scores)}")
if __name__ == "__main__":
main() |