|
import os |
|
import re |
|
import argparse |
|
import tarfile |
|
from concurrent.futures import ThreadPoolExecutor |
|
from tqdm import tqdm |
|
import pandas as pd |
|
from utils import get_file_hash |
|
|
|
|
|
def add_args(parser: argparse.ArgumentParser): |
|
pass |
|
|
|
|
|
def get_metadata(**kwargs): |
|
metadata = pd.read_csv("hf://datasets/JeffreyXiang/TRELLIS-500K/ABO.csv") |
|
return metadata |
|
|
|
|
|
def download(metadata, output_dir, **kwargs): |
|
os.makedirs(os.path.join(output_dir, 'raw'), exist_ok=True) |
|
|
|
if not os.path.exists(os.path.join(output_dir, 'raw', 'abo-3dmodels.tar')): |
|
try: |
|
os.makedirs(os.path.join(output_dir, 'raw'), exist_ok=True) |
|
os.system(f"wget -O {output_dir}/raw/abo-3dmodels.tar https://amazon-berkeley-objects.s3.amazonaws.com/archives/abo-3dmodels.tar") |
|
except: |
|
print("\033[93m") |
|
print("Error downloading ABO dataset. Please check your internet connection and try again.") |
|
print("Or, you can manually download the abo-3dmodels.tar file and place it in the {output_dir}/raw directory") |
|
print("Visit https://amazon-berkeley-objects.s3.amazonaws.com/index.html for more information") |
|
print("\033[0m") |
|
raise FileNotFoundError("Error downloading ABO dataset") |
|
|
|
downloaded = {} |
|
metadata = metadata.set_index("file_identifier") |
|
with tarfile.open(os.path.join(output_dir, 'raw', 'abo-3dmodels.tar')) as tar: |
|
with ThreadPoolExecutor(max_workers=1) as executor, \ |
|
tqdm(total=len(metadata), desc="Extracting") as pbar: |
|
def worker(instance: str) -> str: |
|
try: |
|
tar.extract(f"3dmodels/original/{instance}", path=os.path.join(output_dir, 'raw')) |
|
sha256 = get_file_hash(os.path.join(output_dir, 'raw/3dmodels/original', instance)) |
|
pbar.update() |
|
return sha256 |
|
except Exception as e: |
|
pbar.update() |
|
print(f"Error extracting for {instance}: {e}") |
|
return None |
|
|
|
sha256s = executor.map(worker, metadata.index) |
|
executor.shutdown(wait=True) |
|
|
|
for k, sha256 in zip(metadata.index, sha256s): |
|
if sha256 is not None: |
|
if sha256 == metadata.loc[k, "sha256"]: |
|
downloaded[sha256] = os.path.join('raw/3dmodels/original', k) |
|
else: |
|
print(f"Error downloading {k}: sha256s do not match") |
|
|
|
return pd.DataFrame(downloaded.items(), columns=['sha256', 'local_path']) |
|
|
|
|
|
def foreach_instance(metadata, output_dir, func, max_workers=None, desc='Processing objects') -> pd.DataFrame: |
|
import os |
|
from concurrent.futures import ThreadPoolExecutor |
|
from tqdm import tqdm |
|
|
|
|
|
metadata = metadata.to_dict('records') |
|
|
|
|
|
records = [] |
|
max_workers = max_workers or os.cpu_count() |
|
try: |
|
with ThreadPoolExecutor(max_workers=max_workers) as executor, \ |
|
tqdm(total=len(metadata), desc=desc) as pbar: |
|
def worker(metadatum): |
|
try: |
|
local_path = metadatum['local_path'] |
|
sha256 = metadatum['sha256'] |
|
file = os.path.join(output_dir, local_path) |
|
record = func(file, sha256) |
|
if record is not None: |
|
records.append(record) |
|
pbar.update() |
|
except Exception as e: |
|
print(f"Error processing object {sha256}: {e}") |
|
pbar.update() |
|
|
|
executor.map(worker, metadata) |
|
executor.shutdown(wait=True) |
|
except: |
|
print("Error happened during processing.") |
|
|
|
return pd.DataFrame.from_records(records) |
|
|