|
import os |
|
import copy |
|
import sys |
|
import importlib |
|
import argparse |
|
import pandas as pd |
|
from easydict import EasyDict as edict |
|
|
|
if __name__ == '__main__': |
|
dataset_utils = importlib.import_module(f'datasets.{sys.argv[1]}') |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--output_dir', type=str, required=True, |
|
help='Directory to save the metadata') |
|
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None, |
|
help='Filter objects with aesthetic score lower than this value') |
|
parser.add_argument('--instances', type=str, default=None, |
|
help='Instances to process') |
|
dataset_utils.add_args(parser) |
|
parser.add_argument('--rank', type=int, default=0) |
|
parser.add_argument('--world_size', type=int, default=1) |
|
opt = parser.parse_args(sys.argv[2:]) |
|
opt = edict(vars(opt)) |
|
|
|
os.makedirs(opt.output_dir, exist_ok=True) |
|
|
|
|
|
if not os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): |
|
raise ValueError('metadata.csv not found') |
|
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) |
|
if opt.instances is None: |
|
if opt.filter_low_aesthetic_score is not None: |
|
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score] |
|
if 'local_path' in metadata.columns: |
|
metadata = metadata[metadata['local_path'].isna()] |
|
else: |
|
if os.path.exists(opt.instances): |
|
with open(opt.instances, 'r') as f: |
|
instances = f.read().splitlines() |
|
else: |
|
instances = opt.instances.split(',') |
|
metadata = metadata[metadata['sha256'].isin(instances)] |
|
|
|
start = len(metadata) * opt.rank // opt.world_size |
|
end = len(metadata) * (opt.rank + 1) // opt.world_size |
|
metadata = metadata[start:end] |
|
|
|
print(f'Processing {len(metadata)} objects...') |
|
|
|
|
|
downloaded = dataset_utils.download(metadata, **opt) |
|
downloaded.to_csv(os.path.join(opt.output_dir, f'downloaded_{opt.rank}.csv'), index=False) |
|
|