|
import os |
|
import sys |
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..')) |
|
import copy |
|
import json |
|
import argparse |
|
import torch |
|
import numpy as np |
|
import pandas as pd |
|
from tqdm import tqdm |
|
from easydict import EasyDict as edict |
|
from concurrent.futures import ThreadPoolExecutor |
|
from queue import Queue |
|
|
|
import trellis.models as models |
|
import trellis.modules.sparse as sp |
|
|
|
|
|
torch.set_grad_enabled(False) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--output_dir', type=str, required=True, |
|
help='Directory to save the metadata') |
|
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None, |
|
help='Filter objects with aesthetic score lower than this value') |
|
parser.add_argument('--feat_model', type=str, default='dinov2_vitl14_reg', |
|
help='Feature model') |
|
parser.add_argument('--enc_pretrained', type=str, default='microsoft/TRELLIS-image-large/ckpts/slat_enc_swin8_B_64l8_fp16', |
|
help='Pretrained encoder model') |
|
parser.add_argument('--model_root', type=str, default='results', |
|
help='Root directory of models') |
|
parser.add_argument('--enc_model', type=str, default=None, |
|
help='Encoder model. if specified, use this model instead of pretrained model') |
|
parser.add_argument('--ckpt', type=str, default=None, |
|
help='Checkpoint to load') |
|
parser.add_argument('--instances', type=str, default=None, |
|
help='Instances to process') |
|
parser.add_argument('--rank', type=int, default=0) |
|
parser.add_argument('--world_size', type=int, default=1) |
|
opt = parser.parse_args() |
|
opt = edict(vars(opt)) |
|
|
|
if opt.enc_model is None: |
|
latent_name = f'{opt.feat_model}_{opt.enc_pretrained.split("/")[-1]}' |
|
encoder = models.from_pretrained(opt.enc_pretrained).eval().cuda() |
|
else: |
|
latent_name = f'{opt.feat_model}_{opt.enc_model}_{opt.ckpt}' |
|
cfg = edict(json.load(open(os.path.join(opt.model_root, opt.enc_model, 'config.json'), 'r'))) |
|
encoder = getattr(models, cfg.models.encoder.name)(**cfg.models.encoder.args).cuda() |
|
ckpt_path = os.path.join(opt.model_root, opt.enc_model, 'ckpts', f'encoder_{opt.ckpt}.pt') |
|
encoder.load_state_dict(torch.load(ckpt_path), strict=False) |
|
encoder.eval() |
|
print(f'Loaded model from {ckpt_path}') |
|
|
|
os.makedirs(os.path.join(opt.output_dir, 'latents', latent_name), exist_ok=True) |
|
|
|
|
|
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): |
|
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) |
|
else: |
|
raise ValueError('metadata.csv not found') |
|
if opt.instances is not None: |
|
with open(opt.instances, 'r') as f: |
|
sha256s = [line.strip() for line in f] |
|
metadata = metadata[metadata['sha256'].isin(sha256s)] |
|
else: |
|
if opt.filter_low_aesthetic_score is not None: |
|
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score] |
|
metadata = metadata[metadata[f'feature_{opt.feat_model}'] == True] |
|
if f'latent_{latent_name}' in metadata.columns: |
|
metadata = metadata[metadata[f'latent_{latent_name}'] == False] |
|
|
|
start = len(metadata) * opt.rank // opt.world_size |
|
end = len(metadata) * (opt.rank + 1) // opt.world_size |
|
metadata = metadata[start:end] |
|
records = [] |
|
|
|
|
|
sha256s = list(metadata['sha256'].values) |
|
for sha256 in copy.copy(sha256s): |
|
if os.path.exists(os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')): |
|
records.append({'sha256': sha256, f'latent_{latent_name}': True}) |
|
sha256s.remove(sha256) |
|
|
|
|
|
load_queue = Queue(maxsize=4) |
|
try: |
|
with ThreadPoolExecutor(max_workers=32) as loader_executor, \ |
|
ThreadPoolExecutor(max_workers=32) as saver_executor: |
|
def loader(sha256): |
|
try: |
|
feats = np.load(os.path.join(opt.output_dir, 'features', opt.feat_model, f'{sha256}.npz')) |
|
load_queue.put((sha256, feats)) |
|
except Exception as e: |
|
print(f"Error loading features for {sha256}: {e}") |
|
loader_executor.map(loader, sha256s) |
|
|
|
def saver(sha256, pack): |
|
save_path = os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz') |
|
np.savez_compressed(save_path, **pack) |
|
records.append({'sha256': sha256, f'latent_{latent_name}': True}) |
|
|
|
for _ in tqdm(range(len(sha256s)), desc="Extracting latents"): |
|
sha256, feats = load_queue.get() |
|
feats = sp.SparseTensor( |
|
feats = torch.from_numpy(feats['patchtokens']).float(), |
|
coords = torch.cat([ |
|
torch.zeros(feats['patchtokens'].shape[0], 1).int(), |
|
torch.from_numpy(feats['indices']).int(), |
|
], dim=1), |
|
).cuda() |
|
latent = encoder(feats, sample_posterior=False) |
|
assert torch.isfinite(latent.feats).all(), "Non-finite latent" |
|
pack = { |
|
'feats': latent.feats.cpu().numpy().astype(np.float32), |
|
'coords': latent.coords[:, 1:].cpu().numpy().astype(np.uint8), |
|
} |
|
saver_executor.submit(saver, sha256, pack) |
|
|
|
saver_executor.shutdown(wait=True) |
|
except: |
|
print("Error happened during processing.") |
|
|
|
records = pd.DataFrame.from_records(records) |
|
records.to_csv(os.path.join(opt.output_dir, f'latent_{latent_name}_{opt.rank}.csv'), index=False) |
|
|