|
import os |
|
import json |
|
import argparse |
|
import numpy as np |
|
import pandas as pd |
|
from tqdm import tqdm |
|
from easydict import EasyDict as edict |
|
from concurrent.futures import ThreadPoolExecutor |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--output_dir', type=str, required=True, |
|
help='Directory to save the metadata') |
|
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None, |
|
help='Filter objects with aesthetic score lower than this value') |
|
parser.add_argument('--model', type=str, default='dinov2_vitl14_reg_slat_enc_swin8_B_64l8_fp16', |
|
help='Latent model to use') |
|
parser.add_argument('--num_samples', type=int, default=50000, |
|
help='Number of samples to use for calculating stats') |
|
opt = parser.parse_args() |
|
opt = edict(vars(opt)) |
|
|
|
|
|
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): |
|
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) |
|
else: |
|
raise ValueError('metadata.csv not found') |
|
if opt.filter_low_aesthetic_score is not None: |
|
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score] |
|
metadata = metadata[metadata[f'latent_{opt.model}'] == True] |
|
sha256s = metadata['sha256'].values |
|
sha256s = np.random.choice(sha256s, min(opt.num_samples, len(sha256s)), replace=False) |
|
|
|
|
|
means = [] |
|
mean2s = [] |
|
with ThreadPoolExecutor(max_workers=16) as executor, \ |
|
tqdm(total=len(sha256s), desc="Extracting features") as pbar: |
|
def worker(sha256): |
|
try: |
|
feats = np.load(os.path.join(opt.output_dir, 'latents', opt.model, f'{sha256}.npz')) |
|
feats = feats['feats'] |
|
means.append(feats.mean(axis=0)) |
|
mean2s.append((feats ** 2).mean(axis=0)) |
|
pbar.update() |
|
except Exception as e: |
|
print(f"Error extracting features for {sha256}: {e}") |
|
pbar.update() |
|
|
|
executor.map(worker, sha256s) |
|
executor.shutdown(wait=True) |
|
|
|
mean = np.array(means).mean(axis=0) |
|
mean2 = np.array(mean2s).mean(axis=0) |
|
std = np.sqrt(mean2 - mean ** 2) |
|
|
|
print('mean:', mean) |
|
print('std:', std) |
|
|
|
with open(os.path.join(opt.output_dir, 'latents', opt.model, 'stats.json'), 'w') as f: |
|
json.dump({ |
|
'mean': mean.tolist(), |
|
'std': std.tolist(), |
|
}, f, indent=4) |
|
|