|
import os |
|
import json |
|
from typing import Union |
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
from torch.utils.data import Dataset |
|
import utils3d |
|
from .components import StandardDatasetBase |
|
from ..representations.octree import DfsOctree as Octree |
|
from ..renderers import OctreeRenderer |
|
|
|
|
|
class SparseStructure(StandardDatasetBase): |
|
""" |
|
Sparse structure dataset |
|
|
|
Args: |
|
roots (str): path to the dataset |
|
resolution (int): resolution of the voxel grid |
|
min_aesthetic_score (float): minimum aesthetic score of the instances to be included in the dataset |
|
""" |
|
|
|
def __init__(self, |
|
roots, |
|
resolution: int = 64, |
|
min_aesthetic_score: float = 5.0, |
|
): |
|
self.resolution = resolution |
|
self.min_aesthetic_score = min_aesthetic_score |
|
self.value_range = (0, 1) |
|
|
|
super().__init__(roots) |
|
|
|
def filter_metadata(self, metadata): |
|
stats = {} |
|
metadata = metadata[metadata[f'voxelized']] |
|
stats['Voxelized'] = len(metadata) |
|
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] |
|
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) |
|
return metadata, stats |
|
|
|
def get_instance(self, root, instance): |
|
position = utils3d.io.read_ply(os.path.join(root, 'voxels', f'{instance}.ply'))[0] |
|
coords = ((torch.tensor(position) + 0.5) * self.resolution).int().contiguous() |
|
ss = torch.zeros(1, self.resolution, self.resolution, self.resolution, dtype=torch.long) |
|
ss[:, coords[:, 0], coords[:, 1], coords[:, 2]] = 1 |
|
return {'ss': ss} |
|
|
|
@torch.no_grad() |
|
def visualize_sample(self, ss: Union[torch.Tensor, dict]): |
|
ss = ss if isinstance(ss, torch.Tensor) else ss['ss'] |
|
|
|
renderer = OctreeRenderer() |
|
renderer.rendering_options.resolution = 512 |
|
renderer.rendering_options.near = 0.8 |
|
renderer.rendering_options.far = 1.6 |
|
renderer.rendering_options.bg_color = (0, 0, 0) |
|
renderer.rendering_options.ssaa = 4 |
|
renderer.pipe.primitive = 'voxel' |
|
|
|
|
|
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2] |
|
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4) |
|
yaws = [y + yaws_offset for y in yaws] |
|
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)] |
|
|
|
exts = [] |
|
ints = [] |
|
for yaw, pitch in zip(yaws, pitch): |
|
orig = torch.tensor([ |
|
np.sin(yaw) * np.cos(pitch), |
|
np.cos(yaw) * np.cos(pitch), |
|
np.sin(pitch), |
|
]).float().cuda() * 2 |
|
fov = torch.deg2rad(torch.tensor(30)).cuda() |
|
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) |
|
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov) |
|
exts.append(extrinsics) |
|
ints.append(intrinsics) |
|
|
|
images = [] |
|
|
|
|
|
ss = ss.cuda() |
|
for i in range(ss.shape[0]): |
|
representation = Octree( |
|
depth=10, |
|
aabb=[-0.5, -0.5, -0.5, 1, 1, 1], |
|
device='cuda', |
|
primitive='voxel', |
|
sh_degree=0, |
|
primitive_config={'solid': True}, |
|
) |
|
coords = torch.nonzero(ss[i, 0], as_tuple=False) |
|
representation.position = coords.float() / self.resolution |
|
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(self.resolution)), dtype=torch.uint8, device='cuda') |
|
|
|
image = torch.zeros(3, 1024, 1024).cuda() |
|
tile = [2, 2] |
|
for j, (ext, intr) in enumerate(zip(exts, ints)): |
|
res = renderer.render(representation, ext, intr, colors_overwrite=representation.position) |
|
image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color'] |
|
images.append(image) |
|
|
|
return torch.stack(images) |
|
|