|
import os |
|
import json |
|
from typing import * |
|
import numpy as np |
|
import torch |
|
import utils3d |
|
from ..representations.octree import DfsOctree as Octree |
|
from ..renderers import OctreeRenderer |
|
from .components import StandardDatasetBase, TextConditionedMixin, ImageConditionedMixin |
|
from .. import models |
|
|
|
|
|
class SparseStructureLatentVisMixin: |
|
def __init__( |
|
self, |
|
*args, |
|
pretrained_ss_dec: str = 'microsoft/TRELLIS-image-large/ckpts/ss_dec_conv3d_16l8_fp16', |
|
ss_dec_path: Optional[str] = None, |
|
ss_dec_ckpt: Optional[str] = None, |
|
**kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
self.ss_dec = None |
|
self.pretrained_ss_dec = pretrained_ss_dec |
|
self.ss_dec_path = ss_dec_path |
|
self.ss_dec_ckpt = ss_dec_ckpt |
|
|
|
def _loading_ss_dec(self): |
|
if self.ss_dec is not None: |
|
return |
|
if self.ss_dec_path is not None: |
|
cfg = json.load(open(os.path.join(self.ss_dec_path, 'config.json'), 'r')) |
|
decoder = getattr(models, cfg['models']['decoder']['name'])(**cfg['models']['decoder']['args']) |
|
ckpt_path = os.path.join(self.ss_dec_path, 'ckpts', f'decoder_{self.ss_dec_ckpt}.pt') |
|
decoder.load_state_dict(torch.load(ckpt_path, map_location='cpu', weights_only=True)) |
|
else: |
|
decoder = models.from_pretrained(self.pretrained_ss_dec) |
|
self.ss_dec = decoder.cuda().eval() |
|
|
|
def _delete_ss_dec(self): |
|
del self.ss_dec |
|
self.ss_dec = None |
|
|
|
@torch.no_grad() |
|
def decode_latent(self, z, batch_size=4): |
|
self._loading_ss_dec() |
|
ss = [] |
|
if self.normalization is not None: |
|
z = z * self.std.to(z.device) + self.mean.to(z.device) |
|
for i in range(0, z.shape[0], batch_size): |
|
ss.append(self.ss_dec(z[i:i+batch_size])) |
|
ss = torch.cat(ss, dim=0) |
|
self._delete_ss_dec() |
|
return ss |
|
|
|
@torch.no_grad() |
|
def visualize_sample(self, x_0: Union[torch.Tensor, dict]): |
|
x_0 = x_0 if isinstance(x_0, torch.Tensor) else x_0['x_0'] |
|
x_0 = self.decode_latent(x_0.cuda()) |
|
|
|
renderer = OctreeRenderer() |
|
renderer.rendering_options.resolution = 512 |
|
renderer.rendering_options.near = 0.8 |
|
renderer.rendering_options.far = 1.6 |
|
renderer.rendering_options.bg_color = (0, 0, 0) |
|
renderer.rendering_options.ssaa = 4 |
|
renderer.pipe.primitive = 'voxel' |
|
|
|
|
|
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2] |
|
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4) |
|
yaws = [y + yaws_offset for y in yaws] |
|
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)] |
|
|
|
exts = [] |
|
ints = [] |
|
for yaw, pitch in zip(yaws, pitch): |
|
orig = torch.tensor([ |
|
np.sin(yaw) * np.cos(pitch), |
|
np.cos(yaw) * np.cos(pitch), |
|
np.sin(pitch), |
|
]).float().cuda() * 2 |
|
fov = torch.deg2rad(torch.tensor(30)).cuda() |
|
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) |
|
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov) |
|
exts.append(extrinsics) |
|
ints.append(intrinsics) |
|
|
|
images = [] |
|
|
|
|
|
x_0 = x_0.cuda() |
|
for i in range(x_0.shape[0]): |
|
representation = Octree( |
|
depth=10, |
|
aabb=[-0.5, -0.5, -0.5, 1, 1, 1], |
|
device='cuda', |
|
primitive='voxel', |
|
sh_degree=0, |
|
primitive_config={'solid': True}, |
|
) |
|
coords = torch.nonzero(x_0[i, 0] > 0, as_tuple=False) |
|
resolution = x_0.shape[-1] |
|
representation.position = coords.float() / resolution |
|
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(resolution)), dtype=torch.uint8, device='cuda') |
|
|
|
image = torch.zeros(3, 1024, 1024).cuda() |
|
tile = [2, 2] |
|
for j, (ext, intr) in enumerate(zip(exts, ints)): |
|
res = renderer.render(representation, ext, intr, colors_overwrite=representation.position) |
|
image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color'] |
|
images.append(image) |
|
|
|
return torch.stack(images) |
|
|
|
|
|
class SparseStructureLatent(SparseStructureLatentVisMixin, StandardDatasetBase): |
|
""" |
|
Sparse structure latent dataset |
|
|
|
Args: |
|
roots (str): path to the dataset |
|
latent_model (str): name of the latent model |
|
min_aesthetic_score (float): minimum aesthetic score |
|
normalization (dict): normalization stats |
|
pretrained_ss_dec (str): name of the pretrained sparse structure decoder |
|
ss_dec_path (str): path to the sparse structure decoder, if given, will override the pretrained_ss_dec |
|
ss_dec_ckpt (str): name of the sparse structure decoder checkpoint |
|
""" |
|
def __init__(self, |
|
roots: str, |
|
*, |
|
latent_model: str, |
|
min_aesthetic_score: float = 5.0, |
|
normalization: Optional[dict] = None, |
|
pretrained_ss_dec: str = 'microsoft/TRELLIS-image-large/ckpts/ss_dec_conv3d_16l8_fp16', |
|
ss_dec_path: Optional[str] = None, |
|
ss_dec_ckpt: Optional[str] = None, |
|
): |
|
self.latent_model = latent_model |
|
self.min_aesthetic_score = min_aesthetic_score |
|
self.normalization = normalization |
|
self.value_range = (0, 1) |
|
|
|
super().__init__( |
|
roots, |
|
pretrained_ss_dec=pretrained_ss_dec, |
|
ss_dec_path=ss_dec_path, |
|
ss_dec_ckpt=ss_dec_ckpt, |
|
) |
|
|
|
if self.normalization is not None: |
|
self.mean = torch.tensor(self.normalization['mean']).reshape(-1, 1, 1, 1) |
|
self.std = torch.tensor(self.normalization['std']).reshape(-1, 1, 1, 1) |
|
|
|
def filter_metadata(self, metadata): |
|
stats = {} |
|
metadata = metadata[metadata[f'ss_latent_{self.latent_model}']] |
|
stats['With sparse structure latents'] = len(metadata) |
|
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] |
|
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) |
|
return metadata, stats |
|
|
|
def get_instance(self, root, instance): |
|
latent = np.load(os.path.join(root, 'ss_latents', self.latent_model, f'{instance}.npz')) |
|
z = torch.tensor(latent['mean']).float() |
|
if self.normalization is not None: |
|
z = (z - self.mean) / self.std |
|
|
|
pack = { |
|
'x_0': z, |
|
} |
|
return pack |
|
|
|
|
|
class TextConditionedSparseStructureLatent(TextConditionedMixin, SparseStructureLatent): |
|
""" |
|
Text-conditioned sparse structure dataset |
|
""" |
|
pass |
|
|
|
|
|
class ImageConditionedSparseStructureLatent(ImageConditionedMixin, SparseStructureLatent): |
|
""" |
|
Image-conditioned sparse structure dataset |
|
""" |
|
pass |
|
|