|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import copy |
|
import math |
|
from ipywidgets import interactive, HBox, VBox, FloatLogSlider, IntSlider |
|
|
|
import torch |
|
import nvdiffrast.torch as dr |
|
import kaolin as kal |
|
import util |
|
|
|
|
|
|
|
|
|
|
|
def get_random_camera_batch(batch_size, fovy = np.deg2rad(45), iter_res=[512,512], cam_near_far=[0.1, 1000.0], cam_radius=3.0, device="cuda", use_kaolin=True): |
|
if use_kaolin: |
|
camera_pos = torch.stack(kal.ops.coords.spherical2cartesian( |
|
*kal.ops.random.sample_spherical_coords((batch_size,), azimuth_low=0., azimuth_high=math.pi * 2, |
|
elevation_low=-math.pi / 2., elevation_high=math.pi / 2., device='cuda'), |
|
cam_radius |
|
), dim=-1) |
|
return kal.render.camera.Camera.from_args( |
|
eye=camera_pos + torch.rand((batch_size, 1), device='cuda') * 0.5 - 0.25, |
|
at=torch.zeros(batch_size, 3), |
|
up=torch.tensor([[0., 1., 0.]]), |
|
fov=fovy, |
|
near=cam_near_far[0], far=cam_near_far[1], |
|
height=iter_res[0], width=iter_res[1], |
|
device='cuda' |
|
) |
|
else: |
|
def get_random_camera(): |
|
proj_mtx = util.perspective(fovy, iter_res[1] / iter_res[0], cam_near_far[0], cam_near_far[1]) |
|
mv = util.translate(0, 0, -cam_radius) @ util.random_rotation_translation(0.25) |
|
mvp = proj_mtx @ mv |
|
return mv, mvp |
|
mv_batch = [] |
|
mvp_batch = [] |
|
for i in range(batch_size): |
|
mv, mvp = get_random_camera() |
|
mv_batch.append(mv) |
|
mvp_batch.append(mvp) |
|
return torch.stack(mv_batch).to(device), torch.stack(mvp_batch).to(device) |
|
|
|
def get_rotate_camera(itr, fovy = np.deg2rad(45), iter_res=[512,512], cam_near_far=[0.1, 1000.0], cam_radius=3.0, device="cuda", use_kaolin=True): |
|
if use_kaolin: |
|
ang = (itr / 10) * np.pi * 2 |
|
camera_pos = torch.stack(kal.ops.coords.spherical2cartesian(torch.tensor(ang), torch.tensor(0.4), -torch.tensor(cam_radius))) |
|
return kal.render.camera.Camera.from_args( |
|
eye=camera_pos, |
|
at=torch.zeros(3), |
|
up=torch.tensor([0., 1., 0.]), |
|
fov=fovy, |
|
near=cam_near_far[0], far=cam_near_far[1], |
|
height=iter_res[0], width=iter_res[1], |
|
device='cuda' |
|
) |
|
else: |
|
proj_mtx = util.perspective(fovy, iter_res[1] / iter_res[0], cam_near_far[0], cam_near_far[1]) |
|
|
|
|
|
ang = (itr / 10) * np.pi * 2 |
|
mv = util.translate(0, 0, -cam_radius) @ (util.rotate_x(-0.4) @ util.rotate_y(ang)) |
|
mvp = proj_mtx @ mv |
|
return mv.to(device), mvp.to(device) |
|
|
|
glctx = dr.RasterizeGLContext() |
|
def render_mesh(mesh, camera, iter_res, return_types = ["mask", "depth"], white_bg=False, wireframe_thickness=0.4): |
|
vertices_camera = camera.extrinsics.transform(mesh.vertices) |
|
face_vertices_camera = kal.ops.mesh.index_vertices_by_faces( |
|
vertices_camera, mesh.faces |
|
) |
|
|
|
|
|
|
|
proj = camera.projection_matrix().unsqueeze(1) |
|
proj[:, :, 1, 1] = -proj[:, :, 1, 1] |
|
homogeneous_vecs = kal.render.camera.up_to_homogeneous( |
|
vertices_camera |
|
) |
|
vertices_clip = (proj @ homogeneous_vecs.unsqueeze(-1)).squeeze(-1) |
|
faces_int = mesh.faces.int() |
|
|
|
rast, _ = dr.rasterize( |
|
glctx, vertices_clip, faces_int, iter_res) |
|
|
|
out_dict = {} |
|
for type in return_types: |
|
if type == "mask" : |
|
img = dr.antialias((rast[..., -1:] > 0).float(), rast, vertices_clip, faces_int) |
|
elif type == "depth": |
|
img = dr.interpolate(homogeneous_vecs, rast, faces_int)[0] |
|
elif type == "wireframe": |
|
img = torch.logical_or( |
|
torch.logical_or(rast[..., 0] < wireframe_thickness, rast[..., 1] < wireframe_thickness), |
|
(rast[..., 0] + rast[..., 1]) > (1. - wireframe_thickness) |
|
).unsqueeze(-1) |
|
elif type == "normals" : |
|
img = dr.interpolate( |
|
mesh.face_normals.reshape(len(mesh), -1, 3), rast, |
|
torch.arange(mesh.faces.shape[0] * 3, device='cuda', dtype=torch.int).reshape(-1, 3) |
|
)[0] |
|
if white_bg: |
|
bg = torch.ones_like(img) |
|
alpha = (rast[..., -1:] > 0).float() |
|
img = torch.lerp(bg, img, alpha) |
|
out_dict[type] = img |
|
|
|
|
|
return out_dict |
|
|
|
def render_mesh_paper(mesh, mv, mvp, iter_res, return_types = ["mask", "depth"], white_bg=False): |
|
''' |
|
The rendering function used to produce the results in the paper. |
|
''' |
|
v_pos_clip = util.xfm_points(mesh.vertices.unsqueeze(0), mvp) |
|
rast, db = dr.rasterize( |
|
dr.RasterizeGLContext(), v_pos_clip, mesh.faces.int(), iter_res) |
|
|
|
out_dict = {} |
|
for type in return_types: |
|
if type == "mask" : |
|
img = dr.antialias((rast[..., -1:] > 0).float(), rast, v_pos_clip, mesh.faces.int()) |
|
elif type == "depth": |
|
v_pos_cam = util.xfm_points(mesh.vertices.unsqueeze(0), mv) |
|
img, _ = util.interpolate(v_pos_cam, rast, mesh.faces.int()) |
|
elif type == "normal" : |
|
normal_indices = (torch.arange(0, mesh.nrm.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3) |
|
img, _ = util.interpolate(mesh.nrm.unsqueeze(0).contiguous(), rast, normal_indices.int()) |
|
elif type == "vertex_normal": |
|
img, _ = util.interpolate(mesh.v_nrm.unsqueeze(0).contiguous(), rast, mesh.faces.int()) |
|
img = dr.antialias((img + 1) * 0.5, rast, v_pos_clip, mesh.faces.int()) |
|
if white_bg: |
|
bg = torch.ones_like(img) |
|
alpha = (rast[..., -1:] > 0).float() |
|
img = torch.lerp(bg, img, alpha) |
|
out_dict[type] = img |
|
return out_dict |
|
|
|
class SplitVisualizer(): |
|
def __init__(self, lh_mesh, rh_mesh, height, width): |
|
self.lh_mesh = lh_mesh |
|
self.rh_mesh = rh_mesh |
|
self.height = height |
|
self.width = width |
|
self.wireframe_thickness = 0.4 |
|
|
|
|
|
def render(self, camera): |
|
lh_outputs = render_mesh( |
|
self.lh_mesh, camera, (self.height, self.width), |
|
return_types=["normals", "wireframe"], wireframe_thickness=self.wireframe_thickness |
|
) |
|
rh_outputs = render_mesh( |
|
self.rh_mesh, camera, (self.height, self.width), |
|
return_types=["normals", "wireframe"], wireframe_thickness=self.wireframe_thickness |
|
) |
|
outputs = { |
|
k: torch.cat( |
|
[lh_outputs[k][0].permute(1, 0, 2), rh_outputs[k][0].permute(1, 0, 2)], |
|
dim=0 |
|
).permute(1, 0, 2) for k in ["normals", "wireframe"] |
|
} |
|
return { |
|
'img': (outputs['wireframe'] * ((outputs['normals'] + 1.) / 2.) * 255).to(torch.uint8), |
|
'normals': outputs['normals'] |
|
} |
|
|
|
def show(self, init_camera): |
|
visualizer = kal.visualize.IpyTurntableVisualizer( |
|
self.height, self.width * 2, copy.deepcopy(init_camera), self.render, |
|
max_fps=24, world_up_axis=1) |
|
|
|
def slider_callback(new_wireframe_thickness): |
|
"""ipywidgets sliders callback""" |
|
with visualizer.out: |
|
self.wireframe_thickness = new_wireframe_thickness |
|
|
|
visualizer.render_update() |
|
|
|
wireframe_thickness_slider = FloatLogSlider( |
|
value=self.wireframe_thickness, |
|
base=10, |
|
min=-3, |
|
max=-0.4, |
|
step=0.1, |
|
description='wireframe_thickness', |
|
continuous_update=True, |
|
readout=True, |
|
readout_format='.3f', |
|
) |
|
|
|
interactive_slider = interactive( |
|
slider_callback, |
|
new_wireframe_thickness=wireframe_thickness_slider, |
|
) |
|
|
|
full_output = VBox([visualizer.canvas, interactive_slider]) |
|
display(full_output, visualizer.out) |
|
|
|
class TimelineVisualizer(): |
|
def __init__(self, meshes, height, width): |
|
self.meshes = meshes |
|
self.height = height |
|
self.width = width |
|
self.wireframe_thickness = 0.4 |
|
self.idx = len(meshes) - 1 |
|
|
|
def render(self, camera): |
|
outputs = render_mesh( |
|
self.meshes[self.idx], camera, (self.height, self.width), |
|
return_types=["normals", "wireframe"], wireframe_thickness=self.wireframe_thickness |
|
) |
|
|
|
return { |
|
'img': (outputs['wireframe'] * ((outputs['normals'] + 1.) / 2.) * 255).to(torch.uint8)[0], |
|
'normals': outputs['normals'][0] |
|
} |
|
|
|
def show(self, init_camera): |
|
visualizer = kal.visualize.IpyTurntableVisualizer( |
|
self.height, self.width, copy.deepcopy(init_camera), self.render, |
|
max_fps=24, world_up_axis=1) |
|
|
|
def slider_callback(new_wireframe_thickness, new_idx): |
|
"""ipywidgets sliders callback""" |
|
with visualizer.out: |
|
self.wireframe_thickness = new_wireframe_thickness |
|
self.idx = new_idx |
|
|
|
visualizer.render_update() |
|
|
|
wireframe_thickness_slider = FloatLogSlider( |
|
value=self.wireframe_thickness, |
|
base=10, |
|
min=-3, |
|
max=-0.4, |
|
step=0.1, |
|
description='wireframe_thickness', |
|
continuous_update=True, |
|
readout=True, |
|
readout_format='.3f', |
|
) |
|
|
|
idx_slider = IntSlider( |
|
value=self.idx, |
|
min=0, |
|
max=len(self.meshes) - 1, |
|
description='idx', |
|
continuous_update=True, |
|
readout=True |
|
) |
|
|
|
interactive_slider = interactive( |
|
slider_callback, |
|
new_wireframe_thickness=wireframe_thickness_slider, |
|
new_idx=idx_slider |
|
) |
|
full_output = HBox([visualizer.canvas, interactive_slider]) |
|
display(full_output, visualizer.out) |
|
|